IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v264y2025ipas095183202500376x.html
   My bibliography  Save this article

A time-efficient solution approach for multi/many-task reliability redundancy allocation problems using the online transfer parameter estimation based multifactorial evolutionary algorithm

Author

Listed:
  • Chowdury, Md. Abdul Malek
  • Nath, Rahul
  • Rauniyar, Amit
  • Shukla, Amit K.
  • Muhuri, Pranab K.

Abstract

This paper introduces a time efficient solution approach for multi/many-task RRAP under the framework of the novel online transfer parameter estimation based multi-factorial evolutionary algorithm (MFEA-II). To represent similarity between tasks, the basic MFEA utilizes a single value for transfer parameter leading to negative knowledge transfer during the evolution process as different pair of tasks often have different level of similarity. Proposed MFEA-II based solution approach avoids above problem while solving RRAPs simultaneously by employing online transfer parameter estimation based MFEA-II. To demonstrate the efficiency of the proposed approach, two set of problems (or test sets) are considered with more than two RRAPs. The test set-1 (TS-1) portray the scenario of multi-tasking by considering three problems while test set-2 (TS-2) considers the many-tasking scenario with four problems. The TS-1 includes three RRAP problems: a series system, a complex bridge system, and a series-parallel system. The TS-2 includes these three problems plus a new RRAP problem: the over-speed protection system of a gas turbine. We address each test set using the MFEA-II framework by incorporating the solution structures of all problems into a single solution. For comparison, basic MFEA is utilized to solve each test sets similar to MFEA-II. Subsequently, each problem is also solved independently using genetic algorithms (GA) and particle swarm optimization (PSO). The simulation results are evaluated based on the average of the best reliability, total computation time, performance ranking, and statistical significance tests. The outcome shows that even if the number of tasks increases in a multi-tasking environment, our proposed approach can generate better results compared to basic MFEA as well as single-task optimizer. Moreover, in terms of computation time, the proposed approach provides 6.96 % deteriorated and 2.46 % improved values compared to basic MFEA in TS-1 & TS-2, respectively. In comparison to single task optimizer, proposed MFEA-II provides 40.60 % and 53.43 % faster than GA and 52.25 % and 62.70 % faster than PSO for TS-1 and TS-2, respectively. Further, to rank the algorithm in terms of quality of reliability values and computation time, the multi-criteria decision-making method named TOPSIS method is utilized, where the proposed approach secured the top rank.

Suggested Citation

  • Chowdury, Md. Abdul Malek & Nath, Rahul & Rauniyar, Amit & Shukla, Amit K. & Muhuri, Pranab K., 2025. "A time-efficient solution approach for multi/many-task reliability redundancy allocation problems using the online transfer parameter estimation based multifactorial evolutionary algorithm," Reliability Engineering and System Safety, Elsevier, vol. 264(PA).
  • Handle: RePEc:eee:reensy:v:264:y:2025:i:pa:s095183202500376x
    DOI: 10.1016/j.ress.2025.111175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202500376X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:264:y:2025:i:pa:s095183202500376x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.