IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v263y2025ics0951832025004843.html
   My bibliography  Save this article

Uncertainty evaluation of the debris flow impact considering spatially varying basal friction and solid concentration

Author

Listed:
  • Luo, Hongyu
  • Zhang, Limin
  • He, Jian
  • Zhou, Jiawen

Abstract

The inherent spatial variability of soil is reported to significantly impact landslide debris behaviors. In this study, the effect of spatial variability on the inundation and impact processes of debris flow is investigated using a multi-phase depth-averaged model. The dynamic process of a debris flow, considering spatial variabilities of basal friction and initial solid concentration, is explored via Monte Carlo simulation. The results show that due to the flow channel constrain and spatial averaging, the influences of spatial variability on the global impact of debris flow are not significant. However, remarkable influences on the local impact are found. From the upstream of flow channel to the downstream of river, there is a decreasing trend in uncertainties regarding the material composition and flow dynamics at local spots. In the flow channel, the mean values of flow depths are smaller than those in the deterministic analysis, while those of flow velocities are larger. In the river, both the mean values of flow depths and velocities are close to those in the deterministic analysis while their variations remain significant even downstream of river. The findings provide insights into the spatial variability effects on debris flow impact and facilitate risk assessment.

Suggested Citation

  • Luo, Hongyu & Zhang, Limin & He, Jian & Zhou, Jiawen, 2025. "Uncertainty evaluation of the debris flow impact considering spatially varying basal friction and solid concentration," Reliability Engineering and System Safety, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004843
    DOI: 10.1016/j.ress.2025.111283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025004843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.