IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v263y2025ics0951832025004806.html
   My bibliography  Save this article

Bi-objective redundancy allocation problem in systems with mixed strategy: NSGA-II with a novel initialization

Author

Listed:
  • OszczypaÅ‚a, Mateusz

Abstract

The redundancy allocation problem (RAP) aims to maximize system availability while minimizing costs, subject to weight constraints. The solution to the bi-objective RAP is represented by a Pareto front, comprising non-dominated system configurations. Previous studies have focuses on refining processes such as dominance relationship determination, selection, crossover, and mutation. This paper enhances the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) by introducing a novel approach for generating the initial population. While genetic algorithms traditionally rely on random population generation, this work proposes Scaled Binomial Initialization (SBI), which adjusts the probability of generating binary numbers for subsequent individuals in the initial population. SBI improves the diversity of chromosomes encoding component allocation priorities within subsystems, resulting in greater solution dispersion in the search space and enhanced exploration of regions with extreme objective function values. SBI is specifically designed for indirect chromosome encoding, ensuring feasible solutions across the population in all generations, thereby eliminating the need for a penalty function. A continuous-time Markov chain was developed to estimate the availability of k-out-of-n subsystems with a mixed redundancy strategy. The proposed method was evaluated on four benchmarks: a series system, a series-parallel system, a complex bridge system, and a large-scale system. For small-scale systems, NSGA-II with both random initialization and SBI achieved comparable levels of effectiveness and diversity in the Pareto front. However, for large-scale systems, NSGA-II with SBI demonstrated significant advantages, as reflected in the performance metrics of the approximated Pareto front.

Suggested Citation

  • OszczypaÅ‚a, Mateusz, 2025. "Bi-objective redundancy allocation problem in systems with mixed strategy: NSGA-II with a novel initialization," Reliability Engineering and System Safety, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004806
    DOI: 10.1016/j.ress.2025.111279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025004806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.