IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v263y2025ics0951832025004727.html
   My bibliography  Save this article

Adaptive frequency attention-based interpretable Transformer network for few-shot fault diagnosis of rolling bearings

Author

Listed:
  • Liu, Keying
  • Li, Yifan
  • Cui, Zhaoyang
  • Qi, Guangdong
  • Wang, Biao

Abstract

In recent years, deep learning-based approaches have demonstrated superior performance in few-shot fault diagnosis. Nevertheless, many of these methods lack explicit interpretability, making it difficult to intuitively understand their diagnostic logic. To tackle this issue, an interpretable deep learning model called the adaptive frequency attention-based interpretable Transformer network is proposed for few-shot fault diagnosis of rolling bearings. From a frequency interpretability perspective, the standard Transformer network architecture has been innovatively improved. First, an adaptive frequency attention mechanism is developed that quantifies the importance of various frequency components during the diagnostic process, adaptively identifying and emphasizing key frequency components closely associated with fault modes. This boosts both diagnostic performance and model interpretability. Second, to enhance the diversity of fault features under limited sample conditions, a multiscale convolutional architecture is developed to replace the linear projection layer in input embedding. This architecture employs parallel multiscale convolution kernels to extract both local and global fault features, enabling a comprehensive capture of fault information and further supporting the interpretability of the diagnostic model. Finally, Experiments on interpretable few-shot fault diagnosis are carried out on three rolling bearing datasets, and the diagnostic results further validate the effectiveness and interpretability of the proposed method.

Suggested Citation

  • Liu, Keying & Li, Yifan & Cui, Zhaoyang & Qi, Guangdong & Wang, Biao, 2025. "Adaptive frequency attention-based interpretable Transformer network for few-shot fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004727
    DOI: 10.1016/j.ress.2025.111271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025004727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.