IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v263y2025ics0951832025004107.html
   My bibliography  Save this article

Attention-guided graph isomorphism learning: A multi-task framework for fault diagnosis and remaining useful life prediction

Author

Listed:
  • Qi, Junyu
  • Chen, Zhuyun
  • Kong, Yun
  • Qin, Wu
  • Qin, Yi

Abstract

Intelligent fault diagnosis and remaining useful life (RUL) prediction are essential for the reliable operation of rotating machinery. These technologies enhance safety, availability, and productivity in the manufacturing industry. Graph Convolutional Networks (GCNs), an extension of deep learning (DL) to graph data, provide superior performance due to their unique data representation capabilities. Traditional condition monitoring (CM) typically requires separate models for fault diagnosis and RUL prediction, leading to challenges such as ineffective knowledge sharing and high costs associated with preparing and deploying DL models. To address these issues, this study proposes a multi-task graph isomorphism network with an attention mechanism for simultaneous fault diagnosis and RUL prediction. This method considers the interrelationship between tasks, introducing both a parameter-sharing mechanism and a self-attention mechanism. Compared to traditional single-task methods, the proposed approach offers higher accuracy, greater practicality, and reduced costs of developing the model. The effectiveness of the method is validated using experimental degradation data, demonstrating its capability to address key issues in fault diagnosis and RUL prediction, exhibiting strong potential in practical applications.

Suggested Citation

  • Qi, Junyu & Chen, Zhuyun & Kong, Yun & Qin, Wu & Qin, Yi, 2025. "Attention-guided graph isomorphism learning: A multi-task framework for fault diagnosis and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004107
    DOI: 10.1016/j.ress.2025.111209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025004107
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:263:y:2025:i:c:s0951832025004107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.