Author
Listed:
- Kamalian, Leila
- Li, Huanhuan
- Poo, Mark Ching-Pong
- Bras, Ana
- Ng, Adolf K.Y.
- Yang, Zaili
Abstract
Climate change exacerbates the occurrence of frequent Extreme Weather Events (EWEs), directly disrupting railway operations in numerous countries, notably the United Kingdom. Projections for the UK climate indicate an increase in rainfall intensity, warmer and wetter winters, hotter and drier summers, and more frequent and intense EWEs. Such climatic shifts cause increased weather-related railway delays, which in turn result in significant economic loss. This study develops a new risk model using a data-driven Bayesian Network (BN) to analyse the impact of climate-induced EWEs on UK train delays. The model quantifies the influence of various factors on delays, providing deeper insights into their individual and combined effects. The new model and the findings contribute to the disclosure of 1) the interconnections among the different variables influencing train delays, including the origin and destination of the train and traction type, and 2) the prediction of the quantitative extent to which the variables can jointly lead to train delays of different severity levels, incident reason, the month of occurrence, the responsible operator, and the train schedule type. Critical findings highlight the substantial negative impact of severe flooding on the operational reliability of the UK railway system. An important insight was the significant clustering of delays ranging from 80 to 90 min, particularly on Fridays, suggesting the need for targeted operational interventions in specific regions. Additionally, the analysis identified December as the most hazardous month for train delays due to EWEs, with January and July also showing elevated risk levels. This paper offers valuable insights for transport planners, enabling them to prioritise climate-related scenarios causing the most severe train delays and to formulate the associated adaptation measures and strategies rationally.
Suggested Citation
Kamalian, Leila & Li, Huanhuan & Poo, Mark Ching-Pong & Bras, Ana & Ng, Adolf K.Y. & Yang, Zaili, 2025.
"Analysis of the impact of climate-driven extreme weather events (EWEs) on the UK train delays: A data-driven BN approach,"
Reliability Engineering and System Safety, Elsevier, vol. 262(C).
Handle:
RePEc:eee:reensy:v:262:y:2025:i:c:s0951832025003904
DOI: 10.1016/j.ress.2025.111189
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:262:y:2025:i:c:s0951832025003904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.