IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v261y2025ics0951832025003515.html
   My bibliography  Save this article

Enhancing risk perception by integrating ship interactions in multi-ship encounters: A Graph-based Learning method

Author

Listed:
  • Yang, Kaisen
  • Yang, Dong
  • Lu, Yuxu

Abstract

The navigation safety of autonomous surface ships depends on risk perception and avoidance in advance, which is based on accurate trajectory prediction of other ships. Sequential neural networks in deep learning have demonstrated reliable predictions in navigation scenarios with limited multi-ship interactions. However, accurately predicting trajectory changes caused by ship interactions remains challenging, as these predictions are based on mutually independent historical trajectories. In multi-ship encounters, trajectory predictions that lack interaction considerations can cause subsequent risk perception away from the actual future risk, thereby compromising navigation safety. In this study, we propose a method, the Graph-based Learning model for Risk Perception (GLRP), for risk perception based on interactive trajectory prediction. It introduces a variational graph auto-encoder to simulate the uncertain actions of ships in interactive environments, and takes the self-attention block to learn global time dependencies. GLRP establishes a learning channel from ship interactions to ship trajectories, allowing predictions based on exchanged trajectory inputs. The experiments indicate that GLRP reduces the distance to the closest point of approach error by 5. 45% and the time to the closest point of approach error by 4. 85% compared to individual sequence models. It improves navigation safety by enhancing the reliability of risk perception. The implementation code of this work is available at: https://github.com/KaysenWB/RESS_GLRP.

Suggested Citation

  • Yang, Kaisen & Yang, Dong & Lu, Yuxu, 2025. "Enhancing risk perception by integrating ship interactions in multi-ship encounters: A Graph-based Learning method," Reliability Engineering and System Safety, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:reensy:v:261:y:2025:i:c:s0951832025003515
    DOI: 10.1016/j.ress.2025.111150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025003515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:261:y:2025:i:c:s0951832025003515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.