IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v261y2025ics0951832025003084.html
   My bibliography  Save this article

An active learning method combining MRBF model and dimension-reduction importance sampling for reliability analysis with high dimensionality and very small failure probability

Author

Listed:
  • Yang, Xufeng
  • Jiang, Wenke
  • Zhang, Yu
  • Zhao, Junyi

Abstract

Multiple surrogate models suffer from the curse of dimensionality and Radial basis function (RBF) model is particularly well-suited for approximating of high-dimensional performance functions. Additionally, by leveraging matrix operations, the prediction time of RBF model can be significantly reduced. However, when the failure probability becomes extremely small, the prediction time of matrix-operation RBF (MRBF) model is also prohibitive. To address the challenges posed by both high dimensionality and very small failure probability, we propose an active learning method that fuses the MRBF model with a novel importance sampling method—iCE-m*. iCE-m* is a cross-entropy importance sampling embedded dimensionality reduction mechanism. Firstly, we define the instrumental density series of iCE-m* based on the prediction information of MRBF, which fuels iCE-m* to generate candidate samples covering the region near the limit state surface. Then, we propose a new learning function that measures the coefficient of variation of the square of the performance function, which helps identify the optimal training points near the limit state surface. The performance of the proposed method is demonstrated through five high-dimensional problems. Compared with state-of-the-art methods, the proposed method is highly competitive in terms of both function evaluations and computation time.

Suggested Citation

  • Yang, Xufeng & Jiang, Wenke & Zhang, Yu & Zhao, Junyi, 2025. "An active learning method combining MRBF model and dimension-reduction importance sampling for reliability analysis with high dimensionality and very small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:reensy:v:261:y:2025:i:c:s0951832025003084
    DOI: 10.1016/j.ress.2025.111107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025003084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:261:y:2025:i:c:s0951832025003084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.