IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v261y2025ics0951832025002698.html
   My bibliography  Save this article

Enhancing aircraft reliability with information redundancy: A sensor-modal fusion approach leveraging deep learning

Author

Listed:
  • Zhong, Jie
  • Zhang, Heng
  • Miao, Qiang

Abstract

Redundancy design is a critical way to enhance the reliability and safety of aircraft. However, hardware redundancy significantly increases manufacturing costs and system complexity, while analytical redundancy faces challenges in establishing accurate mathematical models. To address these issues, this paper proposes an information redundancy method for flight data based on sensor-modal fusion. This method leverages deep learning networks to learn the complex coupling relationships between flight parameters from a vast amount of historical flight data. In this respect, a mapping model for flight parameters is established to replace traditional mathematical models used for analytical redundancy. First, the traditional sliding window process is improved by proposing a Fibonacci sampling to balance computational resources and historical view length. Next, a sensor-modal fusion-based prediction model is designed to avoid spatial interactions among sensor features during feature extraction. Furthermore, a sensor attention module and a modal attention module is employed to improve the interpretability of the model. Finally, a Lebesgue evaluation metric is introduced to address ineffective assessment under state balance conditions. The proposed method was validated using real flight data. The results demonstrate that the Lebesgue mean absolute error remained below 1.4 %, outperforming all comparative methods and affirming the effectiveness and superiority of the proposed method. Furthermore, this paper investigated the potential of information redundancy in enhancing aircraft reliability.

Suggested Citation

  • Zhong, Jie & Zhang, Heng & Miao, Qiang, 2025. "Enhancing aircraft reliability with information redundancy: A sensor-modal fusion approach leveraging deep learning," Reliability Engineering and System Safety, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:reensy:v:261:y:2025:i:c:s0951832025002698
    DOI: 10.1016/j.ress.2025.111068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:261:y:2025:i:c:s0951832025002698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.