IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs0951832024005945.html
   My bibliography  Save this article

The Spectral Representation Method: A framework for simulation of stochastic processes, fields, and waves

Author

Listed:
  • Deodatis, George
  • Shields, Michael

Abstract

The Spectral Representation Method (SRM) was developed in the 1970s to simulate Gaussian stochastic processes and fields from a Fourier series expansion according to the Spectral Representation Theorem. Since those early developments, the SRM has continuously evolved into a comprehensive framework for the simulation of stochastic processes, fields, and waves with a rigorous theoretical foundation. Its major advantages are conceptual simplicity and computational efficiency. In the 1990s, much of the theory for simulation of Gaussian stochastic processes, fields, and waves was firmly established and early methods for simulation of non-Gaussian processes, fields, and waves were introduced. In the 2000s and 2010s, methods that coupled the SRM with Translation Process Theory were improved to enable efficient and accurate simulations of stochastic processes, fields, and waves with strongly non-Gaussian marginal probability distributions. More recently, the SRM was extended for higher-order non-Gaussian processes, fields, and waves by extending the Fourier stochastic expansion to include non-linear wave interactions derived from higher-order spectra. This paper reviews the key theoretical developments related with the SRM and provides the relevant algorithms necessary for its practical implementation for the simulation of stochastic processes, fields, and waves that can be either stationary or non-stationary, homogeneous or non-homogeneous, one-dimensional or multi-dimensional, scalar or multi-variate, Gaussian or non-Gaussian, or any combination thereof. The paper concludes with some brief remarks addressing the open research challenges in SRM-based theory and simulations.

Suggested Citation

  • Deodatis, George & Shields, Michael, 2025. "The Spectral Representation Method: A framework for simulation of stochastic processes, fields, and waves," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024005945
    DOI: 10.1016/j.ress.2024.110522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024005945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.