IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v238y2023ics0951832023003885.html
   My bibliography  Save this article

A receptor-centric decision support system for the mitigation of nuclear power atmospheric release incidents

Author

Listed:
  • Ali, Arshad Mohamed
  • Kakosimos, Konstantinos E

Abstract

The history of incidents involving nuclear power plants underscores the imperative for robust consequence assessment and countermeasure plans. Additionally, the recent energy crisis has reaffirmed the enduring necessity of nuclear energy. While a host of assessments, planning, and response fundamentals exist, the literature lacks specific directives for their implementation. Notably, despite a wealth of studies employing the entire suite of available tools (i.e., source release, atmospheric dispersion and deposition, food contamination, and human exposure) for hypothetical or actual cases, the majority tend to focus on the source and fate of nucleoids. Given these circumstances, we propose a receptor-centric and data-driven framework to guide the selection and evaluation of such planning. This framework, which utilizes time-dependent source terms and the JRODOS system, is exemplified within a region home to multiple nuclear plants. Significantly, this new approach proved more robust than traditional wind-rose and worst-case methodologies in capturing a broader spectrum of potential outcomes. Though it was possible to prioritize and validate certain countermeasures, such as sheltering and food restrictions, using the innovative visualization methods within the framework, we identified several limitations. These weaknesses, along with potential avenues for future research, are discussed in this study, contributing valuable insights to this crucial field.

Suggested Citation

  • Ali, Arshad Mohamed & Kakosimos, Konstantinos E, 2023. "A receptor-centric decision support system for the mitigation of nuclear power atmospheric release incidents," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003885
    DOI: 10.1016/j.ress.2023.109474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023003885
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.