IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v238y2023ics0951832023003368.html
   My bibliography  Save this article

Towards safe navigation environment: The imminent role of spatio-temporal pattern mining in maritime piracy incidents analysis

Author

Listed:
  • Li, Huanhuan
  • Yang, Zaili

Abstract

Since the new century, we have witnessed the fast evolution of pirate attack modes in terms of locations, time, used weapons, and targeted ships. It reveals that the current understanding of pirate attack spatio-temporal patterns is fading, requiring new technologies of big data analysis to master the hidden rules of piracy-related risk spatio-temporal patterns and rationalize the development of relevant anti-piracy measures and policies. This paper aims to develop a new framework of spatio-temporal pattern mining to realize the visualization and analysis of maritime piracy incidents from different standpoints using a new piracy incident database generated from three datasets. Time-based, space-based, and spatial-temporal pattern mining of piracy incidents are systematically investigated to dissect the influence of different risk factors and mine the characteristics of the incidents. Moreover, a novel Fast Adaptive Dynamic Time Warping (FADTW) method is proposed to uncover the hidden temporal and spatial-temporal patterns of piracy incidents. Furthermore, Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is applied to extract the spatial distribution patterns and discover the high-risk areas. Finally, risk factors-based classification exploration has uncovered different spatial patterns. The findings, showing the global and local features of piracy incidents, have made significant contributions to rationalizing anti-pirate measures for safe navigation.

Suggested Citation

  • Li, Huanhuan & Yang, Zaili, 2023. "Towards safe navigation environment: The imminent role of spatio-temporal pattern mining in maritime piracy incidents analysis," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
  • Handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003368
    DOI: 10.1016/j.ress.2023.109422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023003368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Maohan & Li, Huanhuan & Liu, Ryan Wen & Lam, Jasmine Siu Lee & Yang, Zaili, 2024. "PiracyAnalyzer: Spatial temporal patterns analysis of global piracy incidents," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:238:y:2023:i:c:s0951832023003368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.