IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023000911.html
   My bibliography  Save this article

A global–local attention network for uncertainty analysis of ground penetrating radar modeling

Author

Listed:
  • Zhao, Yunjie
  • Cheng, Xi
  • Zhang, Taihong
  • Wang, Lei
  • Shao, Wei
  • Wiart, Joe

Abstract

A global–local attention-based feature reconstruction (GLAFR) surrogate model is proposed for uncertainty analysis (UA) in ground penetrating radar (GPR) simulation. The uncertain inputs are converted to electric fields by the surrogate model instead of the full-wave simulation, and the uncertainty of output is quantified effectively. In the model, the global feature scaling (GFS) and the local feature reconstruction (LFR) are employed to obtain the long-term and short-term relationships of features. In addition, a new loss function is proposed to accelerate the convergence of the model for training data with a wider range of input disturbances. The validity of the surrogate model is verified by the UA result from the Monte Carlo method (MCM). Compared with existing deep learning methods, the proposed approach can efficiently get higher quality predictions. Meanwhile, the Sobol indices evaluated by GLAFR are in agreement with those of MCM which requires running the full-wave simulation one thousand times to converge.

Suggested Citation

  • Zhao, Yunjie & Cheng, Xi & Zhang, Taihong & Wang, Lei & Shao, Wei & Wiart, Joe, 2023. "A global–local attention network for uncertainty analysis of ground penetrating radar modeling," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000911
    DOI: 10.1016/j.ress.2023.109176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tohme, Tony & Vanslette, Kevin & Youcef-Toumi, Kamal, 2023. "Reliable neural networks for regression uncertainty estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    4. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    5. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Liu, Zicheng & Lesselier, Dominique & Sudret, Bruno & Wiart, Joe, 2020. "Surrogate modeling based on resampled polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Azzini, Ivano & Rosati, Rossana, 2021. "Sobol’ main effect index: an Innovative Algorithm (IA) using Dynamic Adaptive Variances," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    9. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Chen, Jie & Yu, Yang & Liu, Yongming, 2022. "Physics-guided mixture density networks for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. El Moçayd, Nabil & Shadi Mohamed, M. & Ouazar, Driss & Seaid, Mohammed, 2020. "Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Yoo, Yeongmin & Jung, Ui-Jin & Han, Yong Ha & Lee, Jongsoo, 2021. "Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    13. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Kröker, Ilja & Oladyshkin, Sergey, 2022. "Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Alexanderian, Alen & Gremaud, Pierre A. & Smith, Ralph C., 2020. "Variance-based sensitivity analysis for time-dependent processes," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Lu, Cheng & Teng, Da & Chen, Jun-Yu & Fei, Cheng-Wei & Keshtegar, Behrooz, 2023. "Adaptive vectorial surrogate modeling framework for multi-objective reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Chen, Jie & Yu, Yang & Liu, Yongming, 2022. "Physics-guided mixture density networks for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Guan, Xiaoshu & Sun, Huabin & Hou, Rongrong & Xu, Yang & Bao, Yuequan & Li, Hui, 2023. "A deep reinforcement learning method for structural dominant failure modes searching based on self-play strategy," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Wu, Jinhui & Tao, Yourui & Han, Xu, 2023. "Polynomial chaos expansion approximation for dimension-reduction model-based reliability analysis method and application to industrial robots," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    14. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    16. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Sobol' Ilya M. & Shukhman Boris V., 2007. "On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 89-97, April.
    19. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Moglen, Rachel L. & Barth, Julius & Gupta, Shagun & Kawai, Eiji & Klise, Katherine & Leibowicz, Benjamin D., 2023. "A nexus approach to infrastructure resilience planning under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.