IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp6-22.html
   My bibliography  Save this article

The log-normal modified Weibull distribution and its reliability implications

Author

Listed:
  • Shakhatreh, Mohammed K.
  • Lemonte, Artur J.
  • Moreno–Arenas, Germán

Abstract

This paper introduces a new lifetime distribution to describe and analyze monotone, upside-down bathtub, bathtub-shaped and modified bathtub-shaped failure rates. An important property of the new distribution is that it can have a bathtub-shaped failure rate function with a long flat region, which may be very useful in reliability contexts. Some structural properties of the new model are obtained, and a detailed study of its mean residual life function is provided. In particular, we focus on the fundamental associations between the failure rate and mean residual life regarding their change points. The maximum likelihood method is used to estimate the model parameters. The usefulness of the new distribution is illustrated by means of empirical applications to three real datasets from engineering reliability in order to prove its versatility in practice.

Suggested Citation

  • Shakhatreh, Mohammed K. & Lemonte, Artur J. & Moreno–Arenas, Germán, 2019. "The log-normal modified Weibull distribution and its reliability implications," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 6-22.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:6-22
    DOI: 10.1016/j.ress.2019.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018310780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    3. Zeng, Hongtao & Lan, Tian & Chen, Qiming, 2016. "Five and four-parameter lifetime distributions for bathtub-shaped failure rate using Perks mortality equation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 307-315.
    4. Zhang, Tieling & Xie, Min, 2011. "On the upper truncated Weibull distribution and its reliability implications," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 194-200.
    5. Jiang, R., 2013. "A new bathtub curve model with a finite support," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 44-51.
    6. Prataviera, Fábio & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R. & Verssani, Bruna A.W., 2018. "A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 13-26.
    7. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    8. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    9. Baker, Rose, 2019. "New survival distributions that quantify the gain from eliminating flawed components," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 493-501.
    10. Domma, Filippo & Condino, Francesca, 2014. "A new class of distribution functions for lifetime data," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 36-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Tien Thanh Thach & Radim Bris, 2020. "Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 234(3), pages 496-511, June.
    3. Gurami Tsitsiashvili & Alexandr Losev, 2022. "Safety Margin Prediction Algorithms Based on Linear Regression Analysis Estimates," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    4. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Gupta, Sanjib Kumar & Bhattacharya, Debasis, 2022. "Non-parametric estimation of bivariate reliability from incomplete two-dimensional warranty data," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Du, Yi-Mu & Sun, C.P., 2022. "A novel interpretable model of bathtub hazard rate based on system hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Gupta, Sanjib Kumar & Chattopadhyay, Gaurangadeb, 2022. "Early detection of reliability related problems from two-dimensional warranty data considering labour code priority index," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Luis Carlos Méndez-González & Luis Alberto Rodríguez-Picón & Manuel Iván Rodríguez Borbón & Hansuk Sohn, 2023. "The Chen–Perks Distribution: Properties and Reliability Applications," Mathematics, MDPI, vol. 11(13), pages 1-19, July.
    10. Christian Acal & Juan E. Ruiz-Castro & David Maldonado & Juan B. Roldán, 2021. "One Cut-Point Phase-Type Distributions in Reliability. An Application to Resistive Random Access Memories," Mathematics, MDPI, vol. 9(21), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Negreiros, Ana Cláudia Souza Vidal de & Lins, Isis Didier & Moura, Márcio José das Chagas & Droguett, Enrique López, 2020. "Reliability data analysis of systems in the wear-out phase using a (corrected) q-Exponential likelihood," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Abba, Badamasi & Wang, Hong & Bakouch, Hassan S., 2022. "A reliability and survival model for one and two failure modes system with applications to complete and censored datasets," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Zeng, Hongtao & Lan, Tian & Chen, Qiming, 2016. "Five and four-parameter lifetime distributions for bathtub-shaped failure rate using Perks mortality equation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 307-315.
    5. Baker, Rose, 2019. "New survival distributions that quantify the gain from eliminating flawed components," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 493-501.
    6. Peña-Ramírez, Fernando A. & Guerra, Renata Rojas & Canterle, Diego Ramos & Cordeiro, Gauss M., 2020. "The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    7. He, Bo & Cui, Weimin & Du, Xiaofeng, 2016. "An additive modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 28-37.
    8. Mehrzad Ghorbani & Seyed Fazel Bagheri & Mojtaba Alizadeh, 2017. "A New Family of Distributions: The Additive Modified Weibull Odd Log-logistic-G Poisson Family, Properties and Applications," Annals of Data Science, Springer, vol. 4(2), pages 249-287, June.
    9. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    10. Emrah Altun & Mustafa Ç. Korkmaz & Mahmoud El-Morshedy & Mohamed S. Eliwa, 2021. "A New Flexible Family of Continuous Distributions: The Additive Odd-G Family," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    11. Tien Thanh Thach & Radim Bris, 2020. "Improved new modified Weibull distribution: A Bayes study using Hamiltonian Monte Carlo simulation," Journal of Risk and Reliability, , vol. 234(3), pages 496-511, June.
    12. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Almalki, Saad J. & Yuan, Jingsong, 2013. "A new modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 164-170.
    14. Du, Yi-Mu & Sun, C.P., 2022. "A novel interpretable model of bathtub hazard rate based on system hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Xu, Meng & Droguett, Enrique López & Lins, Isis Didier & das Chagas Moura, Márcio, 2017. "On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 93-105.
    16. Filippo Domma & Francesca Condino & Božidar V. Popović, 2017. "A new generalized weighted Weibull distribution with decreasing, increasing, upside-down bathtub, N-shape and M-shape hazard rate," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2978-2993, December.
    17. Ranjan, Rakesh & Sen, Rijji & Upadhyay, Satyanshu K., 2021. "Bayes analysis of some important lifetime models using MCMC based approaches when the observations are left truncated and right censored," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    19. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    20. Mohamed Elamin Abdallah Mohamed Elamin Omer & Mohd Rizam Abu Bakar & Mohd Bakri Adam & Mohd Shafie Mustafa, 2020. "Cure Models with Exponentiated Weibull Exponential Distribution for the Analysis of Melanoma Patients," Mathematics, MDPI, vol. 8(11), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:6-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.