IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v158y2017icp153-171.html
   My bibliography  Save this article

Reuse of safety certification artefacts across standards and domains: A systematic approach

Author

Listed:
  • Ruiz, Alejandra
  • Juez, Garazi
  • Espinoza, Huáscar
  • de la Vara, Jose Luis
  • Larrucea, Xabier

Abstract

Reuse of systems and subsystem is a common practice in safety-critical systems engineering. Reuse can improve system development and assurance, and there are recommendations on reuse for some domains. Cross-domain reuse, in which a previously certified product typically needs to be assessed against different safety standards, has however received little attention. No guidance exists for this reuse scenario despite its relevance in industry, thus practitioners need new means to tackle it. This paper aims to fill this gap by presenting a systematic approach for reuse of safety certification artefacts across standards and domains. The approach is based on the analysis of the similarities and on the specification of maps between standards. These maps are used to determine the safety certification artefacts that can be reused from one domain to another and reuse consequences. The approach has been validated with practitioners in a case study on the reuse of an execution platform from railway to avionics. The results show that the approach can be effectively applied and that it can reduce the cost of safety certification across standards and domains. Therefore, the approach is a promising way of making cross-domain reuse more cost-effective in industry.

Suggested Citation

  • Ruiz, Alejandra & Juez, Garazi & Espinoza, Huáscar & de la Vara, Jose Luis & Larrucea, Xabier, 2017. "Reuse of safety certification artefacts across standards and domains: A systematic approach," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 153-171.
  • Handle: RePEc:eee:reensy:v:158:y:2017:i:c:p:153-171
    DOI: 10.1016/j.ress.2016.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016304069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    2. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Alanen, Jarmo & Linnosmaa, Joonas & Malm, Timo & Papakonstantinou, Nikolaos & Ahonen, Toni & Heikkilä, Eetu & Tiusanen, Risto, 2022. "Hybrid ontology for safety, security, and dependability risk assessments and Security Threat Analysis (STA) method for industrial control systems," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:158:y:2017:i:c:p:153-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.