IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v130y2014icp61-68.html
   My bibliography  Save this article

A conservative bound for the probability of failure of a 1-out-of-2 protection system with one hardware-only and one software-based protection train

Author

Listed:
  • Bishop, Peter
  • Bloomfield, Robin
  • Littlewood, Bev
  • Popov, Peter
  • Povyakalo, Andrey
  • Strigini, Lorenzo

Abstract

Redundancy and diversity have long been used as means to obtain high reliability in critical systems. While it is easy to show that, say, a 1-out-of-2 diverse system will be more reliable than each of its two individual “trains†, assessing the actual reliability of such systems can be difficult because the trains cannot be assumed to fail independently. If we cannot claim independence of train failures, the computation of system reliability is difficult, because we would need to know the probability of failure on demand (pfd) for every possible demand. These are unlikely to be known in the case of software. Claims for software often concern its marginalpfd, i.e. average across all possible demands. In this paper we consider the case of a 1-out-of-2 safety protection system in which one train contains software (and hardware), and the other train contains only hardware equipment. We show that a useful upper (i.e. conservative) bound can be obtained for the system pfd using only the unconditional pfd for software together with information about the variation of hardware failure probability across demands, which is likely to be known or estimatable. The worst-case result is obtained by “allocating†software failure probability among demand “classes†so as to maximize system pfd.

Suggested Citation

  • Bishop, Peter & Bloomfield, Robin & Littlewood, Bev & Popov, Peter & Povyakalo, Andrey & Strigini, Lorenzo, 2014. "A conservative bound for the probability of failure of a 1-out-of-2 protection system with one hardware-only and one software-based protection train," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 61-68.
  • Handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:61-68
    DOI: 10.1016/j.ress.2014.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Garrett & George Apostolakis, 1999. "Context in the Risk Assessment of Digital Systems," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 23-32, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bishop, Peter & Povyakalo, Andrey, 2020. "A conservative confidence bound for the probability of failure on demand of a software-based system based on failure-free tests of its components," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Bishop, Peter & Povyakalo, Andrey, 2017. "Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and test profiles," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 246-253.
    3. Yaguang Yang, 2019. "Test based safety-critical software reliability estimation using Bayesian method and flow network structure," Journal of Risk and Reliability, , vol. 233(5), pages 847-856, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    2. Pietro Turati & Nicola Pedroni & Enrico Zio, 2017. "An Adaptive Simulation Framework for the Exploration of Extreme and Unexpected Events in Dynamic Engineered Systems," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 147-159, January.
    3. Thieme, Christoph A. & Mosleh, Ali & Utne, Ingrid B. & Hegde, Jeevith, 2020. "Incorporating software failure in risk analysis – Part 1: Software functional failure mode classification," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Zaitseva, Elena & Levashenko, Vitaly & Sedlacek, Peter & Kvassay, Miroslav & Rabcan, Jan, 2021. "Logical differential calculus for calculation of Birnbaum importance of non-coherent system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Sedlacek, Peter & Zaitseva, Elena & Levashenko, Vitaly & Kvassay, Miroslav, 2021. "Critical state of non-coherent multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Thieme, Christoph A. & Mosleh, Ali & Utne, Ingrid B. & Hegde, Jeevith, 2020. "Incorporating software failure in risk analysis––Part 2: Risk modeling process and case study," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Francesco Di Maio & Samuele Baronchelli & Enrico Zio, 2015. "A Computational Framework for Prime Implicants Identification in Noncoherent Dynamic Systems," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 142-156, January.
    8. Di Maio, Francesco & Rai, Ajit & Zio, Enrico, 2016. "A dynamic probabilistic safety margin characterization approach in support of Integrated Deterministic and Probabilistic Safety Analysis," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 9-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:130:y:2014:i:c:p:61-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.