Author
Listed:
- Gross, Ronit D.
- Halevi, Tal
- Koresh, Ella
- Tzach, Yarden
- Kanter, Ido
Abstract
The emergence of spontaneous symmetry breaking among a few heads of multi-head attention (MHA) across transformer blocks in classification tasks was recently demonstrated through the quantification of single-nodal performance (SNP). This finding indicates that each head focuses its attention on a subset of labels through cooperation among its SNPs. This underlying learning mechanism is generalized to large-scale MHA (LS-MHA) using a single matrix value representing single-head performance (SHP), analogous to single-filter performance in convolutional neural networks (CNNs). The results indicate that each SHP matrix comprises multiple unit clusters such that each label being explicitly recognized by a few heads with negligible noise. This leads to an increased signal-to-noise ratio (SNR) along the transformer blocks, thereby improving classification accuracy. These features give rise to several distinct vision transformer (ViT) architectures that achieve the same accuracy but differ in their LS-MHA structures. As a result, their soft committee yields superior accuracy, an outcome not typically observed in CNNs which rely on hundreds of filters. In addition, a significant reduction in latency is achieved without affecting the accuracy by replacing the initial transformer blocks with convolutional layers. This substitution accelerates early-stage learning, which is then improved by subsequent transformer layers. The extension of this learning mechanism to natural language processing tasks, based on quantitative differences between CNNs and ViT architectures, has the potential to yield new insights in deep learning. The findings are demonstrated using compact convolutional transformer architectures trained on the CIFAR-100 dataset.
Suggested Citation
Gross, Ronit D. & Halevi, Tal & Koresh, Ella & Tzach, Yarden & Kanter, Ido, 2025.
"Low-latency vision transformers via large-scale multi-head attention,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 675(C).
Handle:
RePEc:eee:phsmap:v:675:y:2025:i:c:s037843712500487x
DOI: 10.1016/j.physa.2025.130835
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:675:y:2025:i:c:s037843712500487x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.