IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v670y2025ics0378437125002675.html
   My bibliography  Save this article

Zero-determinant strategies in repeated continuously-relaxed games

Author

Listed:
  • Ueda, Masahiko
  • Fujita, Ayaka

Abstract

Mixed extension has played an important role in game theory, especially in the proof of the existence of Nash equilibria in strategic form games. Mixed extension can be regarded as continuous relaxation of a strategic form game. Recently, in repeated games, a class of behavior strategies, called zero-determinant strategies, was introduced. Zero-determinant strategies control payoffs of players by unilaterally enforcing linear relations between payoffs. There are many attempts to extend zero-determinant strategies so as to apply them to broader situations. Here, we extend zero-determinant strategies to repeated games where action sets of players in stage game are continuously relaxed. We see that continuous relaxation broadens the range of possible zero-determinant strategies, compared to the original repeated games. Furthermore, we introduce a special type of zero-determinant strategies, called one-point zero-determinant strategies, which repeat only one continuously-relaxed action in all rounds. By investigating several examples, we show that some property of mixed-strategy Nash equilibria can be reinterpreted as a payoff-control property of one-point zero-determinant strategies.

Suggested Citation

  • Ueda, Masahiko & Fujita, Ayaka, 2025. "Zero-determinant strategies in repeated continuously-relaxed games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 670(C).
  • Handle: RePEc:eee:phsmap:v:670:y:2025:i:c:s0378437125002675
    DOI: 10.1016/j.physa.2025.130615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002675
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:670:y:2025:i:c:s0378437125002675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.