IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v669y2025ics0378437125002584.html
   My bibliography  Save this article

Nonlocal coherent states in an infinite array of boson sites

Author

Listed:
  • Sowa, A.P.
  • Fransson, J.

Abstract

A regular coherent state (CS) is a special type of quantum state for boson particles placed in a single site. The defining feature of the CS is that it is an eigenmode of the annihilation operator. The construction easily generalizes to the case of a finite number of sites. However, the challenge is altogether different when one considers an infinite array of sites. In this work we demonstrate a mathematically rigorous construction that resolves the latter case. The resulting nonlocal coherent states (NCS) are simultaneous eigenmodes for all of the infinitely many annihilation operators acting in the infinite array’s Fock space. Our construction fundamentally relies on Dirichlet series-based analysis and number theoretic arguments.

Suggested Citation

  • Sowa, A.P. & Fransson, J., 2025. "Nonlocal coherent states in an infinite array of boson sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 669(C).
  • Handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002584
    DOI: 10.1016/j.physa.2025.130606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002584
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.