IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v668y2025ics0378437125002092.html
   My bibliography  Save this article

Static conductivity of liquid metallic hydrogen

Author

Listed:
  • Maslov, S.A.
  • Levashov, P.R.
  • Trigger, S.A.

Abstract

The static conductivity of a system of Coulomb particles with strong interaction of ions at arbitrary degeneracy of electrons is investigated. To study the influence of structure on static conductivity, the pair correlation function and structure factors are calculated by the molecular dynamics method for the Coulomb and screened potentials. The static conductivity is calculated based on the collision frequency, in which screening is taken into account via the generalized Debye radius. This approach allows one to consider conductivity in a wide temperature range from a degenerate to a classical electron subsystem. Specific numerical results of the work relate to liquid metallic hydrogen, where there is no need to use potentials with adjustable parameters. The structure factors and conductivity are calculated for the Coulomb interaction between all charged particles.

Suggested Citation

  • Maslov, S.A. & Levashov, P.R. & Trigger, S.A., 2025. "Static conductivity of liquid metallic hydrogen," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 668(C).
  • Handle: RePEc:eee:phsmap:v:668:y:2025:i:c:s0378437125002092
    DOI: 10.1016/j.physa.2025.130557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002092
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Paul Loubeyre & Florent Occelli & Paul Dumas, 2020. "Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen," Nature, Nature, vol. 577(7792), pages 631-635, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Liang & Zhidan Zeng & Ziyin Yang & Fujun Lan & Hongbo Lou & Chendi Yang & Di Peng & Yuxin Liu & Tao Luo & Zhenfang Xing & Qing Wang & Haibo Ke & Yong Yang & Renchao Che & Hongwei Sheng & Ho-kwang , 2025. "Preserving high-pressure solids via freestanding thin-film engineering," Nature Communications, Nature, vol. 16(1), pages 1-6, December.
    2. Mianzhen Mo & Minxue Tang & Zhijiang Chen & J. Ryan Peterson & Xiaozhe Shen & John Kevin Baldwin & Mungo Frost & Mike Kozina & Alexander Reid & Yongqiang Wang & Juncheng E & Adrien Descamps & Benjamin, 2022. "Ultrafast visualization of incipient plasticity in dynamically compressed matter," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. M. I. Eremets & V. S. Minkov & P. P. Kong & A. P. Drozdov & S. Chariton & V. B. Prakapenka, 2023. "Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Kejun Bu & Qingyang Hu & Xiaohuan Qi & Dong Wang & Songhao Guo & Hui Luo & Tianquan Lin & Xiaofeng Guo & Qiaoshi Zeng & Yang Ding & Fuqiang Huang & Wenge Yang & Ho-Kwang Mao & Xujie Lü, 2022. "Nested order-disorder framework containing a crystalline matrix with self-filled amorphous-like innards," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:668:y:2025:i:c:s0378437125002092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.