Limit of the maximum random permutation set entropy
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2025.130425
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Contreras-Reyes, Javier E. & Kharazmi, Omid, 2023. "Belief Fisher–Shannon information plane: Properties, extensions, and applications to time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- De Gregorio, Juan & Sánchez, David & Toral, Raúl, 2022. "An improved estimator of Shannon entropy with applications to systems with memory," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
- Li, Siran & Xiao, Fuyuan, 2023. "Normal distribution based on maximum Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Zhao, Tong & Li, Zhen & Deng, Yong, 2024. "Linearity in Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Zihan Yu & Zhen Li & Yong Deng, 2023. "Power Law Distribution Based On Maximum Entropy Of Random Permutation Set," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-11.
- Kharazmi, Omid & Contreras-Reyes, Javier E., 2023. "Deng–Fisher information measure and its extensions: Application to Conway’s Game of Life," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Zhan, Tianxiang & Zhou, Jiefeng & Li, Zhen & Deng, Yong, 2024. "Generalized information entropy and generalized information dimension," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Zhou, Qianli & Deng, Yong, 2023. "Generating Sierpinski gasket from matrix calculus in Dempster–Shafer theory," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Tong & Li, Zhen & Deng, Yong, 2024. "Linearity in Deng entropy," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
- Zhan, Tianxiang & Zhou, Jiefeng & Li, Zhen & Deng, Yong, 2024. "Generalized information entropy and generalized information dimension," Chaos, Solitons & Fractals, Elsevier, vol. 184(C).
- Zhao, Tong & Li, Zhen & Deng, Yong, 2023. "Information fractal dimension of Random Permutation Set," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Fernandes, Leonardo H.S. & Figueirôa, José R.A. & Martins, Caleb M.F. & Martins, Adriel M.F., 2025. "The battle of informational efficiency: Cryptocurrencies vs. classical assets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 664(C).
- Feng, Deyue & Li, Meizhu & Zhang, Qi, 2025. "Node clustering in complex networks based on structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
- Contreras-Reyes, Javier E. & Kharazmi, Omid, 2023. "Belief Fisher–Shannon information plane: Properties, extensions, and applications to time series analysis," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Kharazmi, Omid & Contreras-Reyes, Javier E., 2023. "Deng–Fisher information measure and its extensions: Application to Conway’s Game of Life," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
- Rostaghi, Mostafa & Rostaghi, Reza & Humeau-Heurtier, Anne & Azami, Hamed, 2024. "Refined composite multivariate multiscale fuzzy dispersion entropy: Theoretical analysis and applications," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
- Contreras-Reyes, Javier E. & Jeldes-Delgado, Fabiola & Carrasco, Raúl, 2024. "Jensen-Detrended Cross-Correlation function for non-stationary time series with application to Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 654(C).
- Piga, Angelo & Font-Pomarol, Lluc & Sales-Pardo, Marta & Guimerà, Roger, 2024. "Bayesian estimation of information-theoretic metrics for sparsely sampled distributions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
- Xie, Jieren & Xu, Guanghua & Chen, Xiaobi & Zhang, Xun & Chen, Ruiquan & Yang, Zengyao & Fang, Churui & Tian, Peiyuan & Wu, Qingqiang & Zhang, Sicong, 2024. "Belief Tsallis-Deng Structure Entropy and its uniform framework for analyzing multivariate time-series complexity based on evidence theory," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
More about this item
Keywords
Shannon entropy; Deng entropy; Dempster–Shafer evidence theory; Approximation; Random permutation set; Maximum entropy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:664:y:2025:i:c:s0378437125000779. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.