IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v632y2023ip1s0378437123008658.html
   My bibliography  Save this article

Statistical model of synchronized cooperative motion in glass-forming liquids

Author

Listed:
  • Yin, Danqi
  • Mauro, John C.

Abstract

This paper presents a theoretical framework describing the tendency for synchronized positional rearrangements of any two structural species in a multicomponent glass-forming liquid. Such correlated motions are especially important as the glass-forming liquid approaches the glass transition. It is established that the expected cage-breaking probability of a structural unit is proportional to the dynamical propensity of the structural unit calculated via the isoconfigurational ensemble method. This theoretical framework supports the notion that spatial heterogeneities in composition result in dynamical heterogeneities, enabled by synchronized positional rearrangements. Using this model, an alkali borosilicate glass is investigated as an example, and results indicate that structural species with large differences in enthalpy might inhibit the expansion of cooperative rearranging regions and increase the number of such regions. The physical impact on relaxation time distribution and configurational entropy are also discussed.

Suggested Citation

  • Yin, Danqi & Mauro, John C., 2023. "Statistical model of synchronized cooperative motion in glass-forming liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
  • Handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008658
    DOI: 10.1016/j.physa.2023.129310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437123008658
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2023.129310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:632:y:2023:i:p1:s0378437123008658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.