IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v607y2022ics0378437122007166.html
   My bibliography  Save this article

A proportional-neighborhood-diversity evolution in snowdrift game on square lattice

Author

Listed:
  • Hu, Xiang
  • Liu, Xingwen
  • Zhou, Xiaobing

Abstract

The subject of how to facilitate cooperation of evolution through different mechanisms has been intensively investigated. For snowdrift game, researches have shown that a moderate dilution of the number of neighbors of individuals will benefit the evolution of cooperation, and have not shown how different dilution degrees effect evolution of cooperation. This paper proposes a proportional-neighborhood-diversity (PND) mechanism which takes into account some relatively typical situations. The core lies in: We provide a proportional vector to indicate the proportion of individuals with different number of interactive neighbors. Each player has fixed spatial neighbors and only plays with interactive neighbors selected from its spatial neighbors. This study is performed by means of the Monte Carlo method and an extended pair-approximation method. The Monte Carlo simulation results show that, compared with the traditional case, introducing different dilution degrees in evolution promotes the emergence of cooperative behavior. An interesting phenomenon is that when most individuals have a smaller number of interactive neighbors, the cooperation level is relatively higher. When applied to the evolutionary game, the PND mechanism can reduce game cost since the number of interactive neighbors is less than that of fixed neighbors in whole evolutionary process. Moreover, it has potential role in social management since the proposed mechanism is more realistic.

Suggested Citation

  • Hu, Xiang & Liu, Xingwen & Zhou, Xiaobing, 2022. "A proportional-neighborhood-diversity evolution in snowdrift game on square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
  • Handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007166
    DOI: 10.1016/j.physa.2022.128158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122007166
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Xiang & Liu, Xingwen, 2021. "Unfixed-neighbor-mechanism promotes cooperation in evolutionary snowdrift game on lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    2. Shu, Feng & Liu, Xingwen & Fang, Kai & Chen, Hao, 2018. "Memory-based snowdrift game on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 15-26.
    3. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    4. Ren, Guangming & Wang, Xingyuan, 2014. "Robustness of cooperation in memory-based prisoner’s dilemma game on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 40-46.
    5. Matjaž Perc & Zhen Wang, 2010. "Heterogeneous Aspirations Promote Cooperation in the Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-8, December.
    6. Yang, Zhihu & Li, Zhi & Wu, Te & Wang, Long, 2014. "Effects of payoff-related velocity in the co-evolutionary snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 304-311.
    7. Deng, Xinyang & Zhang, Zhipeng & Deng, Yong & Liu, Qi & Chang, Shuhua, 2016. "Self-adaptive win-stay-lose-shift reference selection mechanism promotes cooperation on a square lattice," Applied Mathematics and Computation, Elsevier, vol. 284(C), pages 322-331.
    8. Christoph Hauert & Michael Doebeli, 2004. "Spatial structure often inhibits the evolution of cooperation in the snowdrift game," Nature, Nature, vol. 428(6983), pages 643-646, April.
    9. Kokubo, Satoshi & Wang, Zhen & Tanimoto, Jun, 2015. "Spatial reciprocity for discrete, continuous and mixed strategy setups," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 552-568.
    10. Wang, Lei & Xia, Chengyi & Wang, Li & Zhang, Ying, 2013. "An evolving Stag-Hunt game with elimination and reproduction on regular lattices," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 69-76.
    11. Ming-Jian Fu & Han-Xin Yang, 2018. "Stochastic win-stay-lose-learn promotes cooperation in the spatial public goods game," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 29(04), pages 1-8, April.
    12. repec:hhs:iuiwop:487 is not listed on IDEAS
    13. Scatà, Marialisa & Di Stefano, Alessandro & La Corte, Aurelio & Liò, Pietro & Catania, Emanuele & Guardo, Ermanno & Pagano, Salvatore, 2016. "Combining evolutionary game theory and network theory to analyze human cooperation patterns," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 17-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yaojun & Liu, Xingwen, 2024. "Promotion of cooperation in evolutionary snowdrift game with heterogeneous memories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Feng & Liu, Xingwen & Fang, Kai & Chen, Hao, 2018. "Memory-based snowdrift game on a square lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 15-26.
    2. Hu, Xiang & Liu, Xingwen, 2021. "Unfixed-neighbor-mechanism promotes cooperation in evolutionary snowdrift game on lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    3. Dong, Yukun & Xu, Hedong & Fan, Suohai, 2019. "Memory-based stag hunt game on regular lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 247-255.
    4. Huang, Chaochao & Wang, Chaoqian, 2024. "Memory-based involution dilemma on square lattices," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    5. Shu, Feng & Liu, Yaojun & Liu, Xingwen & Zhou, Xiaobing, 2019. "Memory-based conformity enhances cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 480-490.
    6. Li, Cong & Xu, Hedong & Fan, Suohai, 2020. "Synergistic effects of self-optimization and imitation rules on the evolution of cooperation in the investor sharing game," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    7. Wang, Lei & Wang, Juan & Guo, Baohong & Ding, Shuai & Li, Yukun & Xia, Chengyi, 2014. "Effects of benefit-inspired network coevolution on spatial reciprocity in the prisoner’s dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 66(C), pages 9-16.
    8. Zhu, Jiabao & Liu, Xingwen, 2021. "The number of strategy changes can be used to promote cooperation in spatial snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    9. Zhang, Lulu & Pan, Qiuhui & He, Mingfeng, 2022. "The influence of donation behavior on the evolution of cooperation in social dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    10. Pi, Bin & Li, Yuhan & Feng, Minyu, 2022. "An evolutionary game with conformists and profiteers regarding the memory mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Li, Minlan & Liu, Yan-Ping & Han, Yanyan & Wang, Rui-Wu, 2022. "Environmental heterogeneity unifies the effect of spatial structure on the altruistic cooperation in game-theory paradigms," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    12. Oliveira, B.F. de & Szolnoki, A., 2021. "Social dilemmas in off-lattice populations," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    13. Shu, Feng, 2020. "A win-switch-lose-stay strategy promotes cooperation in the evolutionary games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    14. Xie, Kai & Liu, Xingwen & Wang, Huazhang & Jiang, Yulian, 2023. "Multi-heterogeneity public goods evolutionary game on lattice," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    15. Li, Xiaopeng & Hao, Gang & Zhang, Zhipeng & Xia, Chengyi, 2021. "Evolution of cooperation in heterogeneously stochastic interactions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    16. Li, Yan & Ye, Hang, 2015. "Effect of migration based on strategy and cost on the evolution of cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 76(C), pages 156-165.
    17. Te Wu & Feng Fu & Long Wang, 2011. "Moving Away from Nasty Encounters Enhances Cooperation in Ecological Prisoner's Dilemma Game," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    18. Wu, Yu’e & Zhang, Zhipeng & Yang, Guoli & Liu, Haixin & Zhang, Qingfeng, 2022. "Evolution of cooperation driven by diversity on a double-layer square lattice," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Yunsheng Deng & Jihui Zhang, 2022. "The choice-decision based on memory and payoff favors cooperation in stag hunt game on interdependent networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(2), pages 1-13, February.
    20. Liang, Rizhou & Zhang, Jiqiang & Zheng, Guozhong & Chen, Li, 2021. "Social hierarchy promotes the cooperation prevalence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:607:y:2022:i:c:s0378437122007166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.