IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v597y2022ics0378437122002485.html
   My bibliography  Save this article

Nonlinear diffusion of gluons

Author

Listed:
  • Wolschin, Georg

Abstract

It is proposed to consider the fast thermalization of gluons in relativistic heavy-ion collisions as a diffusion process in momentum space. Closed-form analytical solutions of a nonlinear boson diffusion equation (NBDE) with constant drift and diffusion coefficients v, D and boundary conditions at the singularity are derived. The time evolution towards local central temperatures T≲600MeV through inelastic gluon scatterings in heavy-ion collisions is calculated for under- and overoccupied systems in the full momentum range. The results are consistent with QCD-based numerical calculations for gluon thermalization via inelastic gluon collisions.

Suggested Citation

  • Wolschin, Georg, 2022. "Nonlinear diffusion of gluons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
  • Handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002485
    DOI: 10.1016/j.physa.2022.127299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122002485
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon, A. & Wolschin, G., 2021. "Time-dependent condensate fraction in an analytical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Wolschin, Georg, 2018. "Equilibration in finite Bose systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon, A. & Wolschin, G., 2021. "Time-dependent condensate fraction in an analytical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.