IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v596y2022ics0378437122001935.html
   My bibliography  Save this article

A stochastic model for diffusion in a semiconductor layer under the effect of an external potential and non-uniform temperature

Author

Listed:
  • Aragie, Berhanu
  • Daba, Tesema
  • Pellicane, Giuseppe

Abstract

We study a stochastic model for the dynamics of charge carriers hopping from a lattice site to a neighboring one, in a one-dimensional (1D) semiconductor layer. Charge carriers are forced to migrate toward the central region by an external, harmonic potential. We also apply a non-uniform temperature, which is a linear combination of the temperature profiles generated by two heat sources. The first one is hot at the two ends of the semiconductor layer and pushes the charge carriers to stay around the center. The second one is hot around the center and produces the opposite effect. The composition of the two temperature profiles across the semiconductor layer generates two symmetric minima with respect to the central region. We show that this model is a bistable system, and by using both analytical and numerical methods we analyze the effect of different controlling parameters on the diffusion of charge carriers. We also study the crossing rate of charge carriers through the thermally activated barrier, and the stochastic resonance (SR) arising in the presence of a time-varying signal. Our results show that the application of an external potential provides a strong spectral amplification peak η, which occurs at a even lower temperature than the one we reported recently in Aragie (2020).

Suggested Citation

  • Aragie, Berhanu & Daba, Tesema & Pellicane, Giuseppe, 2022. "A stochastic model for diffusion in a semiconductor layer under the effect of an external potential and non-uniform temperature," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  • Handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001935
    DOI: 10.1016/j.physa.2022.127197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122001935
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.