Author
Listed:
- Perotti, Juan I.
- Billoni, Orlando V.
Abstract
Zipf’s law is found when the vocabulary of long written texts is ranked according to the frequency of word occurrences, establishing a power-law decay for the frequency vs rank relation. This law is a robust statistical property observed even in ancient untranslated languages. Interestingly, this law seems to be also manifested in music records when several metrics – functioning as words in written texts – are used. Even though music can be regarded as a language, finding an accurate equivalent of the concept of words in music is difficult because it lacks a functional semantic. This raises the question of which is the appropriate choice of Zipfian units in music, which is extensive to other contexts where this law can emerge. In particular, this is still an open question in written texts, where several alternatives have been proposed as Zipfian units besides the canonical use of words. Seeking to validate a natural election of Zipfian units in music, in this work we find that Zipf’s law emerges when a combination of chords and notes are chosen as Zipfian units. Our results are grounded on a consistent analysis of the statistical properties of music and texts, complemented with theoretical considerations that combine different reference models, including a simple model inspired in the Lempel–Ziv compression algorithm that we have devised to explain the emergence of Zipf’s law as the consequence of languages evolving into more efficient forms of communication.
Suggested Citation
Perotti, Juan I. & Billoni, Orlando V., 2020.
"On the emergence of Zipf ’s law in music,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
Handle:
RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120300984
DOI: 10.1016/j.physa.2020.124309
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437120300984. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.