IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v527y2019ics0378437119307071.html
   My bibliography  Save this article

Research on influence of sun glare in urban tunnels based on cellular automaton model in the framework of Kerner’s three-phase traffic theory

Author

Listed:
  • Hu, Xiaojian
  • Zhang, Fang
  • Lu, Jian
  • Liu, Mingyang
  • Ma, Yongfeng
  • Wan, Qian

Abstract

As ventilation shafts set at the top of urban tunnels becomes a common pattern for ventilation, the sunlight cast under the shafts could cause sun glares which negatively affect the driver’s visual performance. In this paper, the influence of sun glare on individual drivers in urban tunnels is quantitatively illustrated by the change rate of driver’s pupillary area. Then random choice model of deceleration behavior in response to sun glare (DBSG) is established. The DBSG in urban tunnels is incorporated into the well-known KKSW (Kerner–Klenov–Schreckeneberg–Wolf) CA model and a new cellular automata model, KKSW-UT (urban tunnels) CA model is proposed. By means of the numerical simulation, traffic flow characteristics in urban tunnel are studied in the framework of Kerner’s three-phase traffic theory. And the frequency and severity of rear-end conflicts in urban tunnels are analyzed to study the influence of DBSG on traffic safety. Based on the results, it is found that DBSG can negatively influence both the traffic operation and safety.

Suggested Citation

  • Hu, Xiaojian & Zhang, Fang & Lu, Jian & Liu, Mingyang & Ma, Yongfeng & Wan, Qian, 2019. "Research on influence of sun glare in urban tunnels based on cellular automaton model in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
  • Handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307071
    DOI: 10.1016/j.physa.2019.121176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119307071
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.121176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xingyu & Zhu, Huibing & Wang, Jieguang & Zhang, Ming & Zhou, Chunchun & Zhang, Huafeng, 2022. "Modeling impacts of the tunnel section on the mixed traffic flow: A case study of Jiaodong’ao Tunnel in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Zhou, Shirui & Ling, Shuai & Zhu, Chenqiang & Tian, Junfang, 2022. "Cellular automaton model with the multi-anticipative effect to reproduce the empirical findings of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    3. Hu, Xiaojian & Liu, Tenghui & Hao, Xiatong & Su, Ziyi & Yang, Zhikui, 2021. "Research on the influence of bus bay on traffic flow in adjacent lane: Simulations in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Hu, Xiaojian & Qiao, Longqi & Hao, Xiatong & Lin, Chenxi & Liu, Tenghui, 2022. "Research on the impact of entry points on urban arterial roads in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    6. Li, Yixin & Ni, Ying & Sun, Jian & Ma, Zian, 2020. "Modeling the illegal lane-changing behavior of bicycles on road segments: Considering lane-changing categories and bicycle heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    8. Hu, Xiaojian & Hao, Xiatong & Wang, Han & Su, Ziyi & Zhang, Fang, 2020. "Research on on-street temporary parking effects based on cellular automaton model under the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:527:y:2019:i:c:s0378437119307071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.