IDEAS home Printed from
   My bibliography  Save this article

Field percolation-switching in soft ternary anisotropic system


  • Ambrožič, M.
  • Kralj, S.


We study numerically external electric or magnetic field driven switching between percolated and non-percolated configuration of nanoparticles in soft matter ternary systems. The system consists of nematic liquid crystal, impurities and elongated nanoparticles. We use the Lebwohl–Lasher lattice−type modeling to determine the orientational order of nanoparticles and consequently the Metropolis algorithm to find the percolation threshold. In our model the external field acts directly only on the liquid crystal component, which in turn tends to reorient nanoparticles. We determine regimes where an external field relatively robustly switches between percolated and non-percolated states. The main variable physical parameters are volume concentration and length-to-width ratio of nanoparticles, concentration of impurities and temperature. We have revealed that impurities imposing static orientational disorder are a significant part of the system. A possible application is also proposed.

Suggested Citation

  • Ambrožič, M. & Kralj, S., 2019. "Field percolation-switching in soft ternary anisotropic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 11-25.
  • Handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:11-25
    DOI: 10.1016/j.physa.2018.12.044

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:520:y:2019:i:c:p:11-25. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.