IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp299-309.html
   My bibliography  Save this article

Qualitative analysis for a diffusive predator–prey model with hunting cooperative

Author

Listed:
  • Wu, Daiyong
  • Zhao, Min

Abstract

This paper investigates a predator–prey model that adds a cooperation term to the attack rate of the predator population. For the non-spatial model, the existence and stability of non-negative equilibrium points, and bifurcations are studied by choosing cooperation coefficient as control parameter. Our analytical results show that hunting cooperation can be beneficial to the predator population. However, as the cooperation coefficient increases, hunting cooperation can also destabilize the model and promote a sudden collapse of the predator population. For the spatial model, the stability of positive constant steady state solution, Hopf bifurcation and Turing instability are discussed. It is obtained that when the predation diffusion is not smaller than the prey diffusion, the spatial model can reserve the stable stability of the positive constant steady state solution. It is noted that the model without hunting cooperative does not generate Turing instability, while the model with hunting cooperative may generate Turing instability.

Suggested Citation

  • Wu, Daiyong & Zhao, Min, 2019. "Qualitative analysis for a diffusive predator–prey model with hunting cooperative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 299-309.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:299-309
    DOI: 10.1016/j.physa.2018.09.176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313050
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Camara, B.I. & Haque, M. & Mokrani, H., 2016. "Patterns formations in a diffusive ratio-dependent predator–prey model of interacting populations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 374-383.
    2. Abernethy, Gavin M. & Mullan, Rory & Glass, David H. & McCartney, Mark, 2017. "A multiple phenotype predator–prey model with mutation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 762-774.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Renji & Dey, Subrata & Banerjee, Malay, 2023. "Spatio-temporal pattern selection in a prey–predator model with hunting cooperation and Allee effect in prey," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Yanfei Du & Ben Niu & Junjie Wei, 2021. "Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect," Mathematics, MDPI, vol. 9(24), pages 1-40, December.
    3. Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    4. Djilali, Salih & Cattani, Carlo, 2021. "Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Pal, Pallav Jyoti & Mandal, Gourav & Guin, Lakshmi Narayan & Saha, Tapan, 2024. "Allee effect and hunting-induced bifurcation inquisition and pattern formation in a modified Leslie–Gower interacting species system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Weigang & Huang, Chengdai & Xiao, Min & Cao, Jinde, 2019. "Hybrid tactics for bifurcation control in a fractional-order delayed predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 183-191.
    2. Huang, Tousheng & Yang, Hongju & Zhang, Huayong & Cong, Xuebing & Pan, Ge, 2018. "Diverse self-organized patterns and complex pattern transitions in a discrete ratio-dependent predator–prey system," Applied Mathematics and Computation, Elsevier, vol. 326(C), pages 141-158.
    3. Peng, Yahong & Ling, Heyang, 2018. "Pattern formation in a ratio-dependent predator-prey model with cross-diffusion," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 307-318.
    4. McAllister, A. & McCartney, M. & Glass, D.H., 2023. "Stability, collapse and hyperchaos in a class of tri-trophic predator–prey models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    5. Lu, Guangqing & Smidtaite, Rasa & Navickas, Zenonas & Ragulskis, Minvydas, 2018. "The Effect of Explosive Divergence in a Coupled Map Lattice of Matrices," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 308-313.
    6. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    7. Liu, Xia & Zhang, Tonghua & Meng, Xinzhu & Zhang, Tongqian, 2018. "Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 446-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:299-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.