IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v507y2018icp358-373.html
   My bibliography  Save this article

Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting

Author

Listed:
  • Yang, Tao
  • Liu, Jiye
  • Cao, Qingjie

Abstract

In this paper, the archetypal smooth and discontinuous (SD) oscillator considered the gravity is presented for the electromagnetic vibration energy harvesting driven by stochastic environmental fluctuation. This oscillator is composed of a lumped mass connected with a vertical spring and a pair of horizontally springs, which can achieve the bistability widely used in vibration energy harvesting. Based on the stochastic averaging method, the analytical solutions of random responses are obtained and reveal interesting dynamics related to the stationary and transient properties of the device. Then, the influences of the system parameters on the mean square electric current and the mean output power are explored by an analytical method and validated by numerical simulation. Finally, the modelling of electromagnetic bistable harvester under the simultaneous action of harmonic and stochastic excitations is developed, and the condition for the occurrence of stochastic resonance is defined conventionally by the Kramers rate.

Suggested Citation

  • Yang, Tao & Liu, Jiye & Cao, Qingjie, 2018. "Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 358-373.
  • Handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:358-373
    DOI: 10.1016/j.physa.2018.05.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118306563
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.05.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    2. Siewe, M. Siewe & Kenfack, W. Fokou & Kofane, T.C., 2019. "Probabilistic response of an electromagnetic transducer with nonlinear magnetic coupling under bounded noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 26-35.
    3. Liang, Zaitao & Yang, Yanjuan, 2020. "Existence and stability of periodic oscillations of a smooth and discontinuous oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    4. Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Deng, Hang & Ye, Jimin & Huang, Dongmei, 2023. "Design and analysis of a galloping energy harvester with V-shape spring structure under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    7. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:507:y:2018:i:c:p:358-373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.