IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v502y2018icp288-294.html
   My bibliography  Save this article

Effect of the initial configuration for user–object reputation systems

Author

Listed:
  • Wu, Ying-Ying
  • Guo, Qiang
  • Liu, Jian-Guo
  • Zhang, Yi-Cheng

Abstract

Identifying the user reputation accurately is significant for the online social systems. For different fair rating parameter q, by changing the parameter values α and β of the beta probability distribution (RBPD) for ranking online user reputation, we investigate the effect of the initial configuration of the RBPD method for the online user ranking performance. Experimental results for the Netflix and MovieLens data sets show that when the parameter q equals to 0.8 and 0.9, the accuracy value AUC would increase about 4.5% and 3.5% for the Netflix data set, while the AUC value increases about 1.5% for the MovieLens data set when the parameter q is 0.9. Furthermore, we investigate the evolution characteristics of the AUC value for different α and β, and find that as the rating records increase, the AUC value increases about 0.2 and 0.16 for the Netflix and MovieLens data sets, indicating that online users’ reputations will increase as they rate more and more objects.

Suggested Citation

  • Wu, Ying-Ying & Guo, Qiang & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Effect of the initial configuration for user–object reputation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 288-294.
  • Handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:288-294
    DOI: 10.1016/j.physa.2018.02.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118302553
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.02.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. YingSi Zhao & Bo Shen, 2016. "Empirical Study of User Preferences Based on Rating Data of Movies," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-19, January.
    2. Liu, Xiao-Lu & Liu, Jian-Guo & Yang, Kai & Guo, Qiang & Han, Jing-Ti, 2017. "Identifying online user reputation of user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 508-516.
    3. Hao Liao & An Zeng & Rui Xiao & Zhuo-Ming Ren & Duan-Bing Chen & Yi-Cheng Zhang, 2014. "Ranking Reputation and Quality in Online Rating Systems," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    4. Guo, Qiang & Ji, Lei & Liu, Jian-Guo & Han, Jingti, 2017. "Evolution properties of online user preference diversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 698-713.
    5. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    6. Wang, Jia-Hua & Guo, Qiang & Yang, Kai & Zhang, Yi-Lu & Han, Jingti & Liu, Jian-Guo, 2016. "Popularity and user diversity of online objects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 480-486.
    7. Liu, Xiao-Lu & Guo, Qiang & Hou, Lei & Cheng, Can & Liu, Jian-Guo, 2015. "Ranking online quality and reputation via the user activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 629-636.
    8. Qiang Guo & Yang Li & Jian-Guo Liu, 2013. "Information Filtering Based On Users' Negative Opinions," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(05), pages 1-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Ling-Jiao & Gao, Jian, 2018. "A trust-based recommendation method using network diffusion processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 679-691.
    2. Chandra, Anita & Garg, Himanshu & Maiti, Abyayananda, 2019. "A general growth model for online emerging user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 370-384.
    3. Gu, Ke & Fan, Ying & Zeng, An & Zhou, Jianlin & Di, Zengru, 2018. "Analysis on large-scale rating systems based on the signed network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 99-109.
    4. Li, Sheng-Nan & Guo, Qiang & Yang, Kai & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Uncovering the popularity mechanisms for Facebook applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 422-429.
    5. Liu, Xiao-Lu & Liu, Jian-Guo & Yang, Kai & Guo, Qiang & Han, Jing-Ti, 2017. "Identifying online user reputation of user–object bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 508-516.
    6. Zhang, Yuhan & Feng, Xin & Wu, Ye & Xiao, Jinghua, 2018. "The dynamics of online ratings with heterogeneous preferences in online review platform," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 26-30.
    7. Alin ZAMFIROIU & Cristian CIUREA, 2017. "A Model for Users' Profile Recognition based on their Behavior in Online Applications," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(2), pages 181-194.
    8. Yin, Likang & Deng, Yong, 2018. "Measuring transferring similarity via local information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 102-115.
    9. Li, Ren-De & Liu, Jian-Guo & Guo, Qiang & Zhang, Yi-Cheng, 2018. "Social signature identification of dynamical social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 213-222.
    10. Jian Gao & Tao Zhou, 2017. "Quantifying China's Regional Economic Complexity," Papers 1703.01292, arXiv.org, revised Nov 2017.
    11. Guan-Nan Wang & Hui Gao & Lian Chen & Dennis N A Mensah & Yan Fu, 2015. "Predicting Positive and Negative Relationships in Large Social Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-14, June.
    12. Liu, Xiao-Lu & Guo, Qiang & Hou, Lei & Cheng, Can & Liu, Jian-Guo, 2015. "Ranking online quality and reputation via the user activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 629-636.
    13. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    14. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    15. Gao, Fujuan & Fenoaltea, Enrico Maria & Zhang, Yi-Cheng, 2023. "Market failure in a new model of platform design with partially informed consumers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    16. Dai, Lu & Guo, Qiang & Liu, Xiao-Lu & Liu, Jian-Guo & Zhang, Yi-Cheng, 2018. "Identifying online user reputation in terms of user preference," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 403-409.
    17. Yang, Xiao & Gao, Jian & Liu, Jin-Hu & Zhou, Tao, 2018. "Height conditions salary expectations: Evidence from large-scale data in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 86-97.
    18. Liao, Hao & Zeng, An & Zhang, Yi-Cheng, 2015. "Predicting missing links via correlation between nodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 216-223.
    19. Ikuesan Richard Adeyemi & Shukor Abd Razak & Mazleena Salleh & Hein S Venter, 2016. "Observing Consistency in Online Communication Patterns for User Re-Identification," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-27, December.
    20. Leilei Wu & Zhuoming Ren & Xiao-Long Ren & Jianlin Zhang & Linyuan Lü, 2018. "Eliminating the Effect of Rating Bias on Reputation Systems," Complexity, Hindawi, vol. 2018, pages 1-11, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:502:y:2018:i:c:p:288-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.