Author
Listed:
- Zhang, Zhenyu
- Peng, Cheng
- Xu, Jianzhong
Abstract
The discrete velocity direction model is an approximate method to the Boltzmann equation. A developed molecular collision operator for the model is presented in this paper. Under the new operator, the discrete directions of molecules are adjustable, namely, both the number and the angles of discrete directions can be changed as needed in the discrete velocity direction model. At the same time, the governing equations will keep unchanged when the number of discrete directions changes. In fact, with the continuous molecular speed, the discrete velocity direction model has been able to employ any discrete velocities in numerical calculations. The discrete velocity direction model under the new collision operator was applied into some benchmark flows in micro scales in this paper, and the influence of the number of discrete velocities on the computational accuracy was analyzed. The numerical results show that the accuracy of the discrete velocity direction model can be improved significantly by employing more discrete directions, especially for the gas flows at large Knudsen number. With appropriate discrete velocities, this model has been able to give accurate numerical results in all flow regimes. In addition, it is proved that the discrete velocity direction model under the new collision operator satisfies a global H theorem unconditionally, which means that the new operator further improves the intrinsic stability of the discrete velocity direction model.
Suggested Citation
Zhang, Zhenyu & Peng, Cheng & Xu, Jianzhong, 2017.
"A molecular collision operator of adjustable direction for the discrete velocity direction model,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 25-35.
Handle:
RePEc:eee:phsmap:v:483:y:2017:i:c:p:25-35
DOI: 10.1016/j.physa.2017.04.077
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:25-35. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.