IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v481y2017icp209-223.html
   My bibliography  Save this article

Controllable subspace of edge dynamics in complex networks

Author

Listed:
  • Pang, Shao-Peng
  • Hao, Fei

Abstract

For the edge dynamics in some real networks, it may be neither feasible nor necessary to be fully controlled. An accompanying issue is that, when the external signal is applied to a few nodes or even a single node, how many edges can be controlled? In this paper, for the edge dynamics system, we propose a theoretical framework to determine the controllable subspace and calculate its generic dimension based on the integer linear programming. This framework allows us not only to analyze the control centrality, i.e., the ability of a node to control, but also to uncover the controllable centrality, i.e., the propensity of an edge to be controllable. The simulation results and analytic calculation show that dense and homogeneous networks tend to have larger control centrality of nodes and controllable centrality of edges, but the negatively correlated in- and out-degrees of nodes or edges can reduce the two centrality. The positive correlation between the control centrality of node and its out-degree leads to that the distribution of control centrality, instead of that of controllable centrality, is encoded by the out-degree distribution of networks. Meanwhile, the positive correlation indicates that the nodes with high out-degree tend to play more important roles in control.

Suggested Citation

  • Pang, Shao-Peng & Hao, Fei, 2017. "Controllable subspace of edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 209-223.
  • Handle: RePEc:eee:phsmap:v:481:y:2017:i:c:p:209-223
    DOI: 10.1016/j.physa.2017.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117303370
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Catanzaro & R. Pastor-Satorras, 2005. "Analytic solution of a static scale-free network model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 44(2), pages 241-248, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    2. Pang, Shaopeng & Hao, Fei, 2017. "Optimizing controllability of edge dynamics in complex networks by perturbing network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 217-227.
    3. Teruyoshi Kobayashi, 2015. "Trend-driven information cascades on random networks," Discussion Papers 1529, Graduate School of Economics, Kobe University.
    4. Pang, Shao-Peng & Hao, Fei, 2018. "Target control of edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 14-26.
    5. Liu, Yangyang & Zhao, Chengli & Zhang, Xue & Yi, Dongyun & Chen, Wen, 2018. "Core structure: The coupling failure procedure in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 1-11.
    6. Tamás Sebestyén & Balázs Szabó, 2022. "Market interaction structure and equilibrium price heterogeneity in monopolistic competition," Netnomics, Springer, vol. 22(2), pages 259-282, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:481:y:2017:i:c:p:209-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.