IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v477y2017icp34-41.html
   My bibliography  Save this article

Stochastic resonance in photo-switchable spin-crossover solids

Author

Listed:
  • Gudyma, Iurii
  • Maksymov, Artur

Abstract

The stochastic kinetic in photo-switchable spin-crossover materials with periodic driving force in the context of stochastic resonance (SR) was studied. The resonance phenomena in spin-crossover system have been analyzed by means of spectral power amplification (SPA) function. The influence of the parameters of harmonic signal (amplitude and frequency) together with changes of noise intensity have been considered. The SPA is characterized by double peak curve with qualitatively different mechanisms of amplification of the peaks and is examined by Fourier analysis.

Suggested Citation

  • Gudyma, Iurii & Maksymov, Artur, 2017. "Stochastic resonance in photo-switchable spin-crossover solids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 34-41.
  • Handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:34-41
    DOI: 10.1016/j.physa.2017.02.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117301474
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.02.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Gammaitoni & P. Hänggi & P. Jung & F. Marchesoni, 2009. "Stochastic Resonance: A remarkable idea that changed our perception of noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 69(1), pages 1-3, May.
    2. A. Desaix & O. Roubeau & J. Jeftic & J.G. Haasnoot & K. Boukheddaden & E. Codjovi & J. Linarès & M. Noguès & F. Varret, 1998. "Light-induced bistability in spin transition solids leading to thermal and optical hysteresis," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 6(2), pages 183-193, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xi & Luo, Maokang & Zhong, Yangfan & Zhang, Lu, 2022. "Collective dynamic behaviors of a general adjacent coupled chain in both unconfined and confined spaces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    2. Pan, Yan & Duan, Fabing & Xu, Liyan & Chapeau-Blondeau, François, 2019. "Benefits of noise in M-estimators: Optimal noise level and probability density," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Usama, B.I. & Morfu, S. & Marquie, P., 2021. "Vibrational resonance and ghost-vibrational resonance occurrence in Chua’s circuit models with specific nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    2. Liu, Jian & Wang, Youguo, 2018. "Performance investigation of stochastic resonance in bistable systems with time-delayed feedback and three types of asymmetries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 359-369.
    3. Silver, Steven D. & Raseta, Marko & Bazarova, Alina, 2023. "Stochastic resonance in the recovery of signal from agent price expectations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Usama, B.I. & Morfu, S. & Marquié, P., 2019. "Numerical analyses of the vibrational resonance occurrence in a nonlinear dissipative system," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 31-37.
    5. Felix J. Meigel & Thomas Darwent & Leonie Bastin & Lucas Goehring & Karen Alim, 2022. "Dispersive transport dynamics in porous media emerge from local correlations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:477:y:2017:i:c:p:34-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.