IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v464y2016icp93-102.html
   My bibliography  Save this article

Time series characterization via horizontal visibility graph and Information Theory

Author

Listed:
  • Gonçalves, Bruna Amin
  • Carpi, Laura
  • Rosso, Osvaldo A.
  • Ravetti, Martín G.

Abstract

Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degree distribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene.

Suggested Citation

  • Gonçalves, Bruna Amin & Carpi, Laura & Rosso, Osvaldo A. & Ravetti, Martín G., 2016. "Time series characterization via horizontal visibility graph and Information Theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 93-102.
  • Handle: RePEc:eee:phsmap:v:464:y:2016:i:c:p:93-102
    DOI: 10.1016/j.physa.2016.07.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116304940
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.07.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Braga, A.C. & Alves, L.G.A. & Costa, L.S. & Ribeiro, A.A. & de Jesus, M.M.A. & Tateishi, A.A. & Ribeiro, H.V., 2016. "Characterization of river flow fluctuations via horizontal visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1003-1011.
    2. L.C. Carpi & P.M. Saco & O.A. Rosso & M.G. Ravetti, 2012. "Structural evolution of the Tropical Pacific climate network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(11), pages 1-7, November.
    3. Osvaldo Rosso & Felipe Olivares & Luciano Zunino & Luciana Micco & André Aquino & Angelo Plastino & Hilda Larrondo, 2013. "Characterization of chaotic maps using the permutation Bandt-Pompe probability distribution," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(4), pages 1-13, April.
    4. Li, Ping & Wang, Bing-Hong, 2007. "Extracting hidden fluctuation patterns of Hang Seng stock index from network topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 519-526.
    5. Christopher M. Moy & Geoffrey O. Seltzer & Donald T. Rodbell & David M. Anderson, 2002. "Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch," Nature, Nature, vol. 420(6912), pages 162-165, November.
    6. Martín Gómez Ravetti & Laura C Carpi & Bruna Amin Gonçalves & Alejandro C Frery & Osvaldo A Rosso, 2014. "Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    7. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    8. Mutua Stephen & Changgui Gu & Huijie Yang, 2015. "Visibility Graph Based Time Series Analysis," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-19, November.
    9. Saco, Patricia M. & Carpi, Laura C. & Figliola, Alejandra & Serrano, Eduardo & Rosso, Osvaldo A., 2010. "Entropy analysis of the dynamics of El Niño/Southern Oscillation during the Holocene," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 5022-5027.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spichak, David & Kupetsky, Audrey & Aragoneses, Andrés, 2021. "Characterizing complexity of non-invertible chaotic maps in the Shannon–Fisher information plane with ordinal patterns," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Li, Sange & Shang, Pengjian, 2021. "Analysis of nonlinear time series using discrete generalized past entropy based on amplitude difference distribution of horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Borges, João B. & Ramos, Heitor S. & Mini, Raquel A.F. & Rosso, Osvaldo A. & Frery, Alejandro C. & Loureiro, Antonio A.F., 2019. "Learning and distinguishing time series dynamics via ordinal patterns transition graphs," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Gao, Meng & Ge, Ruijun, 2024. "Mapping time series into signed networks via horizontal visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    2. Eduarda T. C. Chagas & Marcelo Queiroz‐Oliveira & Osvaldo A. Rosso & Heitor S. Ramos & Cristopher G. S. Freitas & Alejandro C. Frery, 2022. "White Noise Test from Ordinal Patterns in the Entropy–Complexity Plane," International Statistical Review, International Statistical Institute, vol. 90(2), pages 374-396, August.
    3. Spichak, David & Kupetsky, Audrey & Aragoneses, Andrés, 2021. "Characterizing complexity of non-invertible chaotic maps in the Shannon–Fisher information plane with ordinal patterns," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M. & Neto, Jusie S.P., 2021. "Macroeconophysics indicator of economic efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Zhao, Xiaojun & Zhang, Pengyuan, 2020. "Multiscale horizontal visibility entropy: Measuring the temporal complexity of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Borges, João B. & Ramos, Heitor S. & Mini, Raquel A.F. & Rosso, Osvaldo A. & Frery, Alejandro C. & Loureiro, Antonio A.F., 2019. "Learning and distinguishing time series dynamics via ordinal patterns transition graphs," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    7. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    8. Ferri, Gustavo L. & Figliola, Alejandra & Rosso, Osvaldo A., 2012. "Tsallis’ statistics in the variability of El Niño/Southern Oscillation during the Holocene epoch," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(5), pages 2154-2162.
    9. Luciano Telesca & Zbigniew Czechowski, 2024. "Information–Theoretic Analysis of Visibility Graph Properties of Extremes in Time Series Generated by a Nonlinear Langevin Equation," Mathematics, MDPI, vol. 12(20), pages 1-15, October.
    10. Traversaro, Francisco & Redelico, Francisco O., 2018. "Characterization of autoregressive processes using entropic quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 13-23.
    11. Aquino, Andre L.L. & Ramos, Heitor S. & Frery, Alejandro C. & Viana, Leonardo P. & Cavalcante, Tamer S.G. & Rosso, Osvaldo A., 2017. "Characterization of electric load with Information Theory quantifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 277-284.
    12. Shuai Zhang & Zhoufei Yu & Yue Wang & Xun Gong & Ann Holbourn & Fengming Chang & Heng Liu & Xuhua Cheng & Tiegang Li, 2022. "Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Yuan, Qianshun & Zhang, Jing & Wang, Haiying & Gu, Changgui & Yang, Huijie, 2023. "A multi-scale transition matrix approach to chaotic time series," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    14. Dong-Rui Chen & Chuang Liu & Yi-Cheng Zhang & Zi-Ke Zhang, 2019. "Predicting Financial Extremes Based on Weighted Visual Graph of Major Stock Indices," Complexity, Hindawi, vol. 2019, pages 1-17, October.
    15. Saldivia, Sebastián & Pastén, Denisse & Moya, Pablo S., 2024. "Using visibility graphs to characterize non-Maxwellian turbulent plasmas," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    16. Montani, Fernando & Deleglise, Emilia B. & Rosso, Osvaldo A., 2014. "Efficiency characterization of a large neuronal network: A causal information approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 58-70.
    17. Xiong, Hui & Shang, Pengjian & He, Jiayi, 2019. "Nonuniversality of the horizontal visibility graph in inferring series periodicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    18. Liu, Hongzhi & Zhang, Xingchen & Zhang, Xie, 2018. "Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 560-571.
    19. Yue Yang & Changgui Gu & Qin Xiao & Huijie Yang, 2017. "Evolution of scaling behaviors embedded in sentence series from A Story of the Stone," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-14, February.
    20. Zhou, Yuan-Wu & Liu, Jin-Long & Yu, Zu-Guo & Zhao, Zhi-Qin & Anh, Vo, 2014. "Fractal and complex network analyses of protein molecular dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 21-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:464:y:2016:i:c:p:93-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.