IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v462y2016icp1301-1313.html
   My bibliography  Save this article

Cellular automata model for urban road traffic flow considering pedestrian crossing street

Author

Listed:
  • Zhao, Han-Tao
  • Yang, Shuo
  • Chen, Xiao-Xu

Abstract

In order to analyze the effect of pedestrians’ crossing street on vehicle flows, we investigated traffic characteristics of vehicles and pedestrians. Based on that, rules of lane changing, acceleration, deceleration, randomization and update are modified. Then we established two urban two-lane cellular automata models of traffic flow, one of which is about sections with non-signalized crosswalk and the other is on uncontrolled sections with pedestrians crossing street at random. MATLAB is used for numerical simulation of the different traffic conditions; meanwhile space–time diagram and relational graphs of traffic flow parameters are generated and then comparatively analyzed. Simulation results indicate that when vehicle density is lower than around 25 vehs/(km lane), pedestrians have modest impact on traffic flow, whereas when vehicle density is higher than about 60 vehs/(km lane), traffic speed and volume will decrease significantly especially on sections with non-signal-controlled crosswalk. The results illustrate that the proposed models reconstruct the traffic flow’s characteristic with the situation where there are pedestrians crossing and can provide some practical reference for urban traffic management.

Suggested Citation

  • Zhao, Han-Tao & Yang, Shuo & Chen, Xiao-Xu, 2016. "Cellular automata model for urban road traffic flow considering pedestrian crossing street," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1301-1313.
  • Handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1301-1313
    DOI: 10.1016/j.physa.2016.06.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116304289
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.06.146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez Cruz, José Roberto & Lakouari, Noureddine & Marzoug, Rachid & Pérez Sansalvador, Julio César, 2023. "Pedestrian–vehicle interactions at unsignalized mid-block crosswalks: Effects on traffic flow, CO2 emissions, and energy dissipation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    2. Layegh, Maziyar & Mirbaha, Babak & Rassafi, Amir Abbas, 2020. "Modeling the pedestrian behavior at conflicts with vehicles in multi-lane roundabouts (a cellular automata approach)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    3. Li, Linheng & Wang, Can & Zhang, Ying & Qu, Xu & Li, Rui & Chen, Zhijun & Ran, Bin, 2022. "Microscopic state evolution model of mixed traffic flow based on potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:462:y:2016:i:c:p:1301-1313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.