Author
Listed:
- Beckedahl, Derrick
- Obaga, Emmanuel O.
- Uken, Daniel A.
- Sergi, Alessandro
- Ferrario, Mauro
Abstract
In this paper we reformulate the configurational temperature Nosé–Hoover thermostat of Braga and Travis (2005) by means of a quasi-Hamiltonian theory in phase space Sergi and Ferrario (2001). The quasi-Hamiltonian structure is exploited to introduce a hybrid configurational-kinetic temperature Nosé–Hoover chain thermostat that can achieve a uniform sampling of phase space (also for stiff harmonic systems), as illustrated by simulating the dynamics of one-dimensional harmonic and quartic oscillators. An integration algorithm, based on the symmetric Trotter decomposition of the propagator, is presented and tested against implicit geometric algorithms with a structure similar to the velocity and position Verlet. In order to obtain an explicit form for the symmetric Trotter propagator algorithm, in the case of non-harmonic and non-linear interaction potentials, a position-dependent harmonically approximated propagator is introduced. Such a propagator approximates the dynamics of the configurational degrees of freedom as if they were locally moving in a harmonic potential. The resulting approximated locally harmonic dynamics is tested with good results in the case of a one-dimensional quartic oscillator: The integration is stable and locally time-reversible. Instead, the implicit geometric integrator is stable and time-reversible globally (when convergence is achieved). We also verify the stability of the approximated explicit integrator for a three-dimensional N-particle system interacting through a soft Weeks–Chandler–Andersen potential.
Suggested Citation
Beckedahl, Derrick & Obaga, Emmanuel O. & Uken, Daniel A. & Sergi, Alessandro & Ferrario, Mauro, 2016.
"On the configurational temperature Nosè–Hoover thermostat,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 19-35.
Handle:
RePEc:eee:phsmap:v:461:y:2016:i:c:p:19-35
DOI: 10.1016/j.physa.2016.05.008
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:461:y:2016:i:c:p:19-35. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.