IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v437y2015icp149-161.html
   My bibliography  Save this article

Transport properties of elastically coupled fractional Brownian motors

Author

Listed:
  • Lv, Wangyong
  • Wang, Huiqi
  • Lin, Lifeng
  • Wang, Fei
  • Zhong, Suchuan

Abstract

Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

Suggested Citation

  • Lv, Wangyong & Wang, Huiqi & Lin, Lifeng & Wang, Fei & Zhong, Suchuan, 2015. "Transport properties of elastically coupled fractional Brownian motors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 149-161.
  • Handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:149-161
    DOI: 10.1016/j.physa.2015.05.109
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115005373
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.05.109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koen Visscher & Mark J. Schnitzer & Steven M. Block, 1999. "Single kinesin molecules studied with a molecular force clamp," Nature, Nature, vol. 400(6740), pages 184-189, July.
    2. Wu, Dan & Zhu, Shiqun & Luo, Xiaoqin, 2012. "Coupled Brownian motors with two different kinds of time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1032-1037.
    3. Mark J. Schnitzer & Steven M. Block, 1997. "Kinesin hydrolyses one ATP per 8-nm step," Nature, Nature, vol. 388(6640), pages 386-390, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yingxue & Ning, Lijuan, 2023. "Transport of coupled particles in fractional feedback ratchet driven by Bounded noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    2. Wang, Huiqi & Ni, Feixiang & Lin, Lifeng & Lv, Wangyong & Zhu, Hongqiang, 2018. "Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 124-135.
    3. Lin, Lifeng & Wang, Huiqi & Ma, Hong, 2019. "Directed transport properties of double-headed molecular motors with balanced cargo," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 270-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lipowsky, Reinhard & Klumpp, Stefan, 2005. "‘Life is motion’: multiscale motility of molecular motors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(1), pages 53-112.
    2. Woochul Nam & Bogdan I Epureanu, 2016. "Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-18, January.
    3. Ashwin I. D’Souza & Rahul Grover & Gina A. Monzon & Ludger Santen & Stefan Diez, 2023. "Vesicles driven by dynein and kinesin exhibit directional reversals without regulators," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Chou, Y.C. & Hsiao, Yi-Feng & To, Kiwing, 2015. "Dynamic model of the force driving kinesin to move along microtubule—Simulation with a model system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 66-73.
    5. Bibi Najma & Minu Varghese & Lev Tsidilkovski & Linnea Lemma & Aparna Baskaran & Guillaume Duclos, 2022. "Competing instabilities reveal how to rationally design and control active crosslinked gels," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Peter Keller & Sylvie Rœlly & Angelo Valleriani, 2015. "A Quasi Random Walk to Model a Biological Transport Process," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 125-137, March.
    7. Wang, Huiqi & Ni, Feixiang & Lin, Lifeng & Lv, Wangyong & Zhu, Hongqiang, 2018. "Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 124-135.
    8. Shreyas Bhaban & Donatello Materassi & Mingang Li & Thomas Hays & Murti Salapaka, 2016. "Interrogating Emergent Transport Properties for Molecular Motor Ensembles: A Semi-analytical Approach," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-30, November.
    9. Lipowsky, Reinhard & Chai, Yan & Klumpp, Stefan & Liepelt, Steffen & Müller, Melanie J.I., 2006. "Molecular motor traffic: From biological nanomachines to macroscopic transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 34-51.
    10. Teagan E. Bate & Megan E. Varney & Ezra H. Taylor & Joshua H. Dickie & Chih-Che Chueh & Michael M. Norton & Kun-Ta Wu, 2022. "Self-mixing in microtubule-kinesin active fluid from nonuniform to uniform distribution of activity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:437:y:2015:i:c:p:149-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.