IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v416y2014icp499-517.html
   My bibliography  Save this article

High temperature thermostatistics of fermionic Fibonacci oscillators with intermediate statistics

Author

Listed:
  • Algin, Abdullah
  • Arikan, Ali Serdar
  • Dil, Emre

Abstract

In this study, we pursue an original idea about whether unique deformed particle algebra could effectively describe a set of crucial quantum properties including the non-standard statistics of particles, the internal structure of particles, and the interaction of particles. Following such an idea, we consider a specific Fermi gas model containing the two-parameter deformed fermionic particles called fermionic Fibonacci oscillators. For such a system, several thermostatistical functions such as the total number of particles, the internal energy, and the entropy are calculated in the thermodynamical limit by means of some properties of the Fibonacci calculus. A virial expansion of the equation of state for the system is also obtained, and the first five virial coefficients are derived in terms of the real independent deformation parameters q and p. From the results obtained here, it is first found that for two and three spatial dimensions, the present deformed Fermi gas model shows an interpolation between fermionic and boson-like systems, and secondly, it is concluded that the two-parameter deformation of fermions leads to a suitable framework for an effective description of interacting composite particle systems.

Suggested Citation

  • Algin, Abdullah & Arikan, Ali Serdar & Dil, Emre, 2014. "High temperature thermostatistics of fermionic Fibonacci oscillators with intermediate statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 499-517.
  • Handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:499-517
    DOI: 10.1016/j.physa.2014.08.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114007584
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.08.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:416:y:2014:i:c:p:499-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.