IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i4p612-617.html
   My bibliography  Save this article

Continuous time random walk with jump length correlated with waiting time

Author

Listed:
  • Liu, Jian
  • Bao, Jing-Dong

Abstract

A coupled continuous time random walk (CTRW) model is proposed, in which the jump length of a walker is correlated with waiting time. The power law distribution is chosen as the probability density function of waiting time and the Gaussian-like distribution as the probability density function of jump length. Normal diffusion, subdiffusion and superdiffusion can be realized within the present model. It is shown that the competition between long-tailed distribution and correlation of jump length and waiting time will lead to different diffusive behavior.

Suggested Citation

  • Liu, Jian & Bao, Jing-Dong, 2013. "Continuous time random walk with jump length correlated with waiting time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 612-617.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:612-617
    DOI: 10.1016/j.physa.2012.10.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112009156
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saenko, Viacheslav V., 2016. "The influence of the finite velocity on spatial distribution of particles in the frame of Levy walk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 765-782.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:4:p:612-617. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.