IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Analysis of noise-induced bimodality in a Michaelis–Menten single-step enzymatic cycle

Listed author(s):
  • Remondini, Daniel
  • Giampieri, Enrico
  • Bazzani, Armando
  • Castellani, Gastone
  • Maritan, Amos
Registered author(s):

    In this paper we study noise-induced bimodality in a specific circuit with many biological implications, namely a single-step enzymatic cycle described by Michaelis–Menten equations. We study the biological feasibility of this phenomenon, which allows for switch-like behavior in response to graded stimuli, considering a small and discrete number of molecules involved in the circuit, and we characterize the conditions necessary for it. We show that intrinsic noise (due to the stochastic character of the Master Equation approach) of a one-dimensional substrate reaction is not sufficient to achieve bimodality, then we characterize analytically the necessary conditions on enzyme number fluctuations. We implement numerically two model circuits that show bimodality over different parameter windows, that depend critically on system size as predicted by our results, providing hints about how such a phenomenon could be exploited in real biological systems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 2 ()
    Pages: 336-342

    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:2:p:336-342
    DOI: 10.1016/j.physa.2012.09.005
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:2:p:336-342. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.