Author
Listed:
- Moglia, Belén
- Guisoni, Nara
- Albano, Ezequiel V.
Abstract
To shed light on the understanding of the angiogenesis process, we study a simplified lattice model for the capillary network formation between an existing blood vessel and an initially hypoxic tissue. We consider that the cells of the tissue surface can release growth factors that will diffuse, leading to the formation of new capillaries that ultimately arrive at the tissue. Additionally, we consider the local production of growth factors by the growing capillary network. We also propose the existence of an inhibition mechanism at the hypoxic surface, i.e., a fixed number of neighboring sites of an already irrigated site of the hypoxic tissue stop releasing growth factors due to the arrival of nutrients. Particularly, the goal of this work is to study the effect of the release of local growth factors and the inhibition mechanism on properties such as the directionality of the growing network and the irrigation of the hypoxic tissue. Therefore we propose the quantification of these two relevant features for angiogenesis modeling. We establish a relationship between the model behavior without the release of local growth factors in the presence of the inhibition mechanism and a normal angiogenesis process. In this situation, the model gives a directional capillary network and a good irrigation of the hypoxic tissue. On the other hand, for a large number of released local growth factors in the absence of the inhibition mechanism, the model could be appropriate for the description of tumor angiogenesis. In this case, the model provides a rather small directionality for the growing structure, with a worse degree of irrigation of the hypoxic tissue, as well as a more tortuous capillary network with many closed branches and loops.
Suggested Citation
Moglia, Belén & Guisoni, Nara & Albano, Ezequiel V., 2013.
"Study of capillary network directionality and irrigation of hypoxic tissue in an angiogenesis lattice model,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6389-6399.
Handle:
RePEc:eee:phsmap:v:392:y:2013:i:24:p:6389-6399
DOI: 10.1016/j.physa.2013.08.016
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:24:p:6389-6399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.