IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Parrondo’s paradox and complementary Parrondo processes

Listed author(s):
  • Soo, Wayne Wah Ming
  • Cheong, Kang Hao
Registered author(s):

    Parrondo’s Paradox has gained a fair amount of attention due to it being counter-intuitive. Given two stochastic processes, both of which are losing in nature, it is possible to have an overall net increase in capital by periodically or randomly alternating between the two processes. In this paper, we analyze the paradox with a different approach, in which we start with one process and seek to derive its complementary process. We will also state the conditions required for this to occur. Possible applications of our results include the development of future models based on the paradox.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 1 ()
    Pages: 17-26

    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:17-26
    DOI: 10.1016/j.physa.2012.08.006
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. N. Masuda & N. Konno, 2004. "Subcritical behavior in the alternating supercritical Domany-Kinzel dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 40(3), pages 313-319, August.
    2. Flitney, A.P. & Abbott, D., 2003. "Quantum models of Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 152-156.
    3. Flitney, A.P. & Ng, J. & Abbott, D., 2002. "Quantum Parrondo's games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 35-42.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:17-26. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.