IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Percolation of dimers on square lattices

Listed author(s):
  • Lebrecht, W.
  • Valdés, J.F.
  • Vogel, E.E.
  • Nieto, F.
  • Ramirez-Pastor, A.J.
Registered author(s):

    A theoretical approach, based on exact calculations of configurations on finite rectangular cells, is applied to study the percolation of homonuclear dimers on square lattices. An efficient algorithm allows us to calculate the detailed structure of the configuration space for M=Lx×Ly cells, with M varying from 16 to 36. The percolation process has been monitored by following the percolation function, defined as the ratio between the number of percolating configurations and the total number of available configurations for a given cell size and concentration of occupied sites. The percolation threshold has been calculated by means of two complementary methods: one based on well-known renormalization techniques and the other based on determining the inflection point of the percolation function curves. A comparison of the results obtained by these two methods has been performed. The study includes the use of finite-size scaling theory to extrapolate numerical results towards the thermodynamic limit. The effect of jamming due to dimers is also established. Finally, the critical exponents ν, β and γ have been obtained and values compared with numerical results and expected theoretical estimations. The present results show agreement and even improvement (in the case of γ) with respect to some numeric values available in the literature.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 1 ()
    Pages: 149-156

    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:149-156
    DOI: 10.1016/j.physa.2012.08.014
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:149-156. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.