IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Log-periodic corrections to the Cole–Cole expression in dielectric relaxation

Listed author(s):
  • Khamzin, A.A.
  • Nigmatullin, R.R.
  • Popov, I.I.
Registered author(s):

    A model of the self-similar process of relaxation is given, and a method of derivation of the kinetic equations for the total polarization based on the ideas of fractional kinetics is suggested. The derived kinetic equations contain integro-differential operators having non-integer order. They lead to the Cole–Cole expression for the complex dielectric permittivity. It is shown rigorously that the power-law exponent α in the Cole–Cole expression coincides with the dimension of the mixed space-temporal fractal ensemble. If the discrete scale invariance for the temporal-space structure of the dielectric medium considered becomes important, then the expression for the complex dielectric permittivity contains log-periodic corrections (oscillations) and, hence, it generalizes the conventional Cole–Cole expression. The corrections obtained in this model suggest another way of interpretation and analysis of dielectric spectra for different complex materials.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 392 (2013)
    Issue (Month): 1 ()
    Pages: 136-148

    in new window

    Handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:136-148
    DOI: 10.1016/j.physa.2012.08.011
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:1:p:136-148. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.