Author
Abstract
Benford’s law is a counterintuitive statistical law asserting that the distribution of leading digits, taken from a large ensemble of positive numerical values that range over many orders of scale, is logarithmic rather than uniform (as intuition suggests). In this paper we explore Benford’s law from a Poisson perspective, considering ensembles of positive numerical values governed by Poisson-process statistics. We show that this Poisson setting naturally accommodates Benford’s law and: (i) establish a Poisson characterization and a Poisson multidigit-extension of Benford’s law; (ii) study a system-invariant leading-digit distribution which generalizes Benford’s law, and establish a Poisson characterization and a Poisson multidigit-extension of this distribution; (iii) explore the universal emergence of the system-invariant leading-digit distribution, couple this universal emergence to the universal emergence of the Weibull and Fréchet extreme-value distributions, and distinguish the special role of Benford’s law in this universal emergence; (iv) study the continued-fractions counterpart of the system-invariant leading-digit distribution, and establish a Poisson characterization of this distribution; and (v) unveil the elemental connection between the system-invariant leading-digit distribution and its continued-fractions counterpart. This paper presents a panoramic Poisson approach to Benford’s law, to its system-invariant generalization, and to its continued-fractions counterpart.
Suggested Citation
Eliazar, Iddo I., 2013.
"Benford’s law: A Poisson perspective,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3360-3373.
Handle:
RePEc:eee:phsmap:v:392:y:2013:i:16:p:3360-3373
DOI: 10.1016/j.physa.2013.03.057
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:16:p:3360-3373. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.