IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Heat transfer in rapidly solidifying supercooled pure melt during final transient

Listed author(s):
  • Buchbinder, G.L.
  • Volkov, V.A.
Registered author(s):

    The heat transfer model for a one-dimensional supercooled melt during the final stage of solidification is considered. The Stefan problem for the determination of the temperature distribution is solved under the condition that (i) the interface approaches the specimen surface with a constant velocity V; (ii) the latent heat of solidification linearly depends on the interface temperature; (iii) all the physical quantities given at the phase boundary are presented by linear combinations of the exponential functions of the interface position. First we find the solution of the corresponding hyperbolic Stefan problem within the framework of which the heat transfer is described by the telegraph equation. The solution of the initial parabolic Stefan problem is then found as a result of the limiting transition V/VH→0(VH→∞), where VH is the velocity of the propagation of the heat disturbances, in which the hyperbolic heat model tends to the parabolic one.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Physica A: Statistical Mechanics and its Applications.

    Volume (Year): 391 (2012)
    Issue (Month): 23 ()
    Pages: 5935-5947

    in new window

    Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5935-5947
    DOI: 10.1016/j.physa.2012.07.028
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5935-5947. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.