IDEAS home Printed from
   My bibliography  Save this article

Fractal structure of equipotential curves on a continuum percolation model


  • Matsutani, Shigeki
  • Shimosako, Yoshiyuki
  • Wang, Yunhong


We numerically investigate the electric potential distribution over a two-dimensional continuum percolation model between the electrodes. The model consists of overlapped conductive particles on the background with an infinitesimal conductivity. Using the finite difference method, we solve the generalized Laplace equation and show that in the potential distribution, there appear quasi-equipotential clusters which approximately and locally have the same values as steps and stairs. Since the quasi-equipotential clusters have the fractal structure, we compute the fractal dimension of equipotential curves and its dependence on the volume fraction over [0,1]. The fractal dimension in [1.00, 1.246] has a peak at the percolation threshold pc.

Suggested Citation

  • Matsutani, Shigeki & Shimosako, Yoshiyuki & Wang, Yunhong, 2012. "Fractal structure of equipotential curves on a continuum percolation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5802-5809.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5802-5809
    DOI: 10.1016/j.physa.2012.06.056

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Continuum percolation; Fractal structure;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:23:p:5802-5809. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.