IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i22p5411-5421.html
   My bibliography  Save this article

An intermediate distribution between Gaussian and Cauchy distributions

Author

Listed:
  • Liu, Tong
  • Zhang, Ping
  • Dai, Wu-Sheng
  • Xie, Mi

Abstract

In this paper, we construct an intermediate distribution linking the Gaussian and the Cauchy distribution. We provide the probability density function and the corresponding characteristic function of the intermediate distribution. Because many kinds of distributions have no moment, we introduce weighted moments. Specifically, we consider weighted moments under two types of weighted functions: the cut-off function and the exponential function. Through these two types of weighted functions, we can obtain weighted moments for almost all distributions. We consider an application of the probability density function of the intermediate distribution on the spectral line broadening in laser theory. Moreover, we utilize the intermediate distribution to the problem of the stock market return in quantitative finance.

Suggested Citation

  • Liu, Tong & Zhang, Ping & Dai, Wu-Sheng & Xie, Mi, 2012. "An intermediate distribution between Gaussian and Cauchy distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5411-5421.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5411-5421 DOI: 10.1016/j.physa.2012.06.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112005390
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    2. Lukáš Vácha & Miloslav S. Vošvrda, 2005. "Dynamical Agents' Strategies and the Fractal Market Hypothesis," Prague Economic Papers, University of Economics, Prague, vol. 2005(2), pages 163-170.
    3. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    4. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    5. Hayashi, Takashi, 2008. "Regret aversion and opportunity dependence," Journal of Economic Theory, Elsevier, vol. 139(1), pages 242-268, March.
    6. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    7. Maslov, Sergei & Mills, Mark, 2001. "Price fluctuations from the order book perspective—empirical facts and a simple model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 234-246.
    8. Drożdż, S. & Forczek, M. & Kwapień, J. & Oświe¸cimka, P. & Rak, R., 2007. "Stock market return distributions: From past to present," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 59-64.
    9. Eom, Cheoljun & Choi, Sunghoon & Oh, Gabjin & Jung, Woo-Sung, 2008. "Hurst exponent and prediction based on weak-form efficient market hypothesis of stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(18), pages 4630-4636.
    10. Jean-Philippe Bouchaud, 2002. "An introduction to statistical finance," Science & Finance (CFM) working paper archive 313238, Science & Finance, Capital Fund Management.
    11. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    12. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
    13. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    14. Yi-Cheng Zhang, 1999. "Toward a Theory of Marginally Efficient Markets," Papers cond-mat/9901243, arXiv.org.
    15. Frantisek Slanina, 2001. "Mean-field approximation for a limit order driven market model," Papers cond-mat/0104547, arXiv.org, revised Aug 2001.
    16. Sergei Maslov & Mark Mills, 2001. "Price fluctuations from the order book perspective - empirical facts and a simple model," Papers cond-mat/0102518, arXiv.org.
    17. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    18. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(02), pages 170-196, June.
    19. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    20. Zhang, Yi-Cheng, 1999. "Toward a theory of marginally efficient markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 30-44.
    21. Rak, R. & Drożdż, S. & Kwapień, J., 2007. "Nonextensive statistical features of the Polish stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(1), pages 315-324.
    22. Maslov, Sergei, 2000. "Simple model of a limit order-driven market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 278(3), pages 571-578.
    23. Bouchaud, Jean-Philippe, 2002. "An introduction to statistical finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 313(1), pages 238-251.
    24. Zheng, B. & Ren, F. & Trimper, S. & Zheng, D.F., 2004. "A generalized dynamic herding model with feed-back interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 653-661.
    25. W.-X. Zhou & D. Sornette, 2007. "Self-organizing Ising model of financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 175-181, January.
    26. Vasiliki Plerou & Parameswaran Gopikrishnan & Xavier Gabaix & H. Eugene Stanley, 2004. "On the Origin of Power-Law Fluctuations in Stock Prices," Papers cond-mat/0403067, arXiv.org.
    27. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    28. Vasiliki Plerou & Parameswaran Gopikrishnan & H. Eugene Stanley, 2005. "Two phase behaviour and the distribution of volume," Quantitative Finance, Taylor & Francis Journals, vol. 5(6), pages 519-521.
    29. S. Drozdz & M. Forczek & J. Kwapien & P. Oswiecimka & R. Rak, 2007. "Stock market return distributions: from past to present," Papers 0704.0664, arXiv.org.
    30. Eom, Cheoljun & Oh, Gabjin & Jung, Woo-Sung, 2008. "Relationship between efficiency and predictability in stock price change," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5511-5517.
    31. Vasiliki Plerou & Parameswaran Gopikrishnan & Xavier Gabaix & H. Eugene Stanley, 2001. "Quantifying Stock Price Response to Demand Fluctuations," Papers cond-mat/0106657, arXiv.org.
    32. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabio Pizzutilo, 2013. "The Distribution of the Returns of Japanese Stocks and Portfolios," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(9), pages 1249-1259, September.
    2. Contreras-Reyes, Javier E., 2015. "Rényi entropy and complexity measure for skew-gaussian distributions and related families," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 84-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5411-5421. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.