Author
Listed:
- Mauro, John C.
- Smedskjaer, Morten M.
Abstract
The distinguishability of particles has important implications for calculating the partition function in statistical mechanics. While there are standard formulations for systems of identical particles that are either fully distinguishable or fully indistinguishable, many realistic systems do not fall into either of these limiting cases. In particular, the glass transition involves a continuous transition from an ergodic liquid system of indistinguishable particles to a nonergodic glassy system where the particles become distinguishable. While the question of partial distinguishability of microstates has been treated previously in quantum information theory, this issue has not yet been addressed for a system of classical particles. In this paper, we present a general theoretical formalism for quantifying particle distinguishability in classical systems. This formalism is based on a classical definition of relative entropy, such as applied in quantum information theory. Example calculations for a simple glass-forming system demonstrate the continuous onset of distinguishability as temperature is lowered. We also examine the loss of distinguishability in the limit of long observation time, coinciding with the restoration of ergodicity. We discuss some of the general implications of our work, including the direct connection to topological constraint theory of glass. We also discuss qualitative features of distinguishability as they relate to the Second and Third Laws of thermodynamics.
Suggested Citation
Mauro, John C. & Smedskjaer, Morten M., 2012.
"Distinguishability of particles in glass-forming systems,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5392-5403.
Handle:
RePEc:eee:phsmap:v:391:y:2012:i:22:p:5392-5403
DOI: 10.1016/j.physa.2012.05.073
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:22:p:5392-5403. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.